Long non-coding RNAs (lncRNAs) influence pathetiology of breast cancer. Besides, VDR and ESR1 signaling pathways are two important pathways in this malignancy. In the present mixed bioinformatics and expression assay study, we have identified lncRNAs that are co-expressed with VDR and ESR1 in breast cancer tissues and analyzed their expression in 42 paired breast cancer and non-cancerous specimens. Expression of SLC16A-AS1 was significantly lower in breast cancer tissues compared with paired non-cancerous samples (expression ratio = 0.27, P value < 0.001). Similarly, LINC00900 was down-regulated in cancer tissues compared with non-cancerous ones (expression ratio = 0.26, P value = 0.01). There were no significant differences in the expressions of VDR and AATBC between these two sets of samples. Expression levels of VDR and AATBC were associated with histological grade (P values = 0.02 and 0.03, respectively). Moreover, expression of VDR was associated with tumor size (P value = 0.02). Finally, expression levels of SLC16A-AS1 were associated with first pregnancy age (P value = 0.006). In brief, the results of current study further support involvement of VDR and ESR1-associated lncRNAs in breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BD-210083DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cancer tissues
12
vdr esr1
8
expression
8
tissues compared
8
samples expression
8
expression ratio
8
vdr aatbc
8
expression levels
8
cancer
7

Similar Publications

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Dabrafenib upregulates hypoglycosylated MUC1 and improves the therapeutic efficacy of Tn-MUC1 CAR-T cells.

Sci Bull (Beijing)

December 2024

Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

View Article and Find Full Text PDF

Computational Pathology Detection of Hypoxia-Induced Morphological Changes in Breast Cancer.

Am J Pathol

December 2024

Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!