Automatic segmentation of rodent brain tumor on magnetic resonance imaging (MRI) may facilitate biomedical research. The current study aims to prove the feasibility for automatic segmentation by artificial intelligence (AI), and practicability of AI-assisted segmentation. MRI images, including T2WI, T1WI and CE-T1WI, of brain tumor from 57 WAG/Rij rats in KU Leuven and 46 mice from the cancer imaging archive (TCIA) were collected. A 3D U-Net architecture was adopted for segmentation of tumor bearing brain and brain tumor. After training, these models were tested with both datasets after Gaussian noise addition. Reduction of inter-observer disparity by AI-assisted segmentation was also evaluated. The AI model segmented tumor-bearing brain well for both Leuven and TCIA datasets, with Dice similarity coefficients (DSCs) of 0.87 and 0.85 respectively. After noise addition, the performance remained unchanged when the signal-noise ratio (SNR) was higher than two or eight, respectively. For the segmentation of tumor lesions, AI-based model yielded DSCs of 0.70 and 0.61 for Leuven and TCIA datasets respectively. Similarly, the performance is uncompromised when the SNR was over two and eight respectively. AI-assisted segmentation could significantly reduce the inter-observer disparities and segmentation time in both rats and mice. Both AI models for segmenting brain or tumor lesions could improve inter-observer agreement and therefore contributed to the standardization of the following biomedical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840251 | PMC |
http://dx.doi.org/10.1186/s40478-023-01509-w | DOI Listing |
Sensors (Basel)
December 2024
Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London WC2R 2LS, UK.
MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
Palbociclib, an oral CDK 4/6 inhibitor, was evaluated in a Pediatric Brain Tumor Consortium (PBTC) phase 1 (NCT02255461; PBTC-042) study to treat children and young adults with recurrent, progressive, or refractory brain tumors. The objectives of this study were to characterize the palbociclib population pharmacokinetics in children enrolled on PBTC-042, to conduct a population pharmacodynamic analysis in this patient population, and to perform a simulation study to assess the role of palbociclib exposure on neutropenia and thrombocytopenia. The palbociclib population pharmacokinetics and pharmacodynamics were characterized in this patient population (n = 34 patients; 4.
View Article and Find Full Text PDFNutrients
December 2024
Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan.
Background: Cactus contains dietary fiber and minerals and is expected to have preventive effects against diabetes, arteriosclerosis, and other diseases. Additionally, cactus intake induces the production of short-chain fatty acids derived from the gut microbiota, which might influence immune functions. In this study, we examined the effects of a cactus (: NC)-supplemented diet on lipopolysaccharide (LPS)-induced immune responses and intestinal barrier function.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
Background: Glioblastoma is an aggressive and incurable type of brain cancer. Little progress has been made in the development of effective new therapies in the past decades. The blood-brain barrier (BBB) and drug efflux pumps, which together hamper drug delivery to these tumors, play a pivotal role in the gap between promising preclinical findings and failure in clinical trials.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
The Research Institute, The McGill University Health Center, Montreal, QC H4A 3J1, Canada.
Glioblastoma multiforme is an aggressive malignancy with a dismal 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier (BBB). We have previously shown that high-amplitude repetitive transcranial magnetic stimulation (rTMS) in rats allowed the delivery across the BBB of an IGF signaling inhibitor-IGF-Trap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!