Growing populations and climate change pose great challenges to food security. Humankind is confronting a serious question: how will we feed the world in the near future? This study presents an out-of-the-box solution involving the highly efficient biosynthesis of artificial starch and microbial proteins from available and abundant agricultural residue as new feed and food sources. A one-pot biotransformation using an in vitro coenzyme-free synthetic enzymatic pathway and baker's yeast can simultaneously convert dilute sulfuric acid-pretreated corn stover to artificial starch and microbial protein under aerobic conditions. The β-glucosidase-free commercial cellulase mixture plus an ex vivo two-enzyme complex containing cellobiose phosphorylase and potato α-glucan phosphorylase displayed on the surface of Saccharomyces cerevisiae, showed better cellulose hydrolysis rates than a commercial β-glucosidase-rich cellulase mixture. This is because the channeling of the hydrolytic product from the solid cellulosic feedstock to the yeast mitigated the inhibition of the cellulase cocktail. Animal tests have shown that the digestion of artificial amylose results in slow and relatively small changes in blood sugar levels, suggesting that it could be a new health food component that prevents obesity and diabetes. A combination of the utilization of available agricultural residue and the biosynthesis of starch and microbial protein from non-food biomass could address the looming food crisis in the food-energy-water nexus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2023.01.006 | DOI Listing |
Food Chem X
January 2025
Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran.
This study aimed to estimate the effects of chitosan/ corn starch (CH/ CS equal 62:38) film in combination with nettle essential oil nanoemulsions (0.41 wt% NEONEs) and starch nanocrystals (6 wt% SNCs) on the microbial and qualitative characteristics of the fillets during refrigeration storage (4 ± 1 °C). The fillets were covered by biopolymeric films (CH/CS, CH/CS/SNCs, CH/CS/ NEONEs, CH/CS/SNCs/NEONEs).
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
Aims: Flavobacterium strains are widely distributed in various environments and generally exhibit specialized roles in the degradation of complex organic substrates. To obtain a deeper understanding of their enzyme profiles, patterns of action on natural carbohydrates degradation, and to mine gene resources for biomass conversion.
Methods And Results: We sequenced the whole genome of a novel carbohydrate-degrading Flavobacterium sp.
Nat Commun
January 2025
Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China.
Lilies are economically important monocots known for their ornamental flowers, bulbs, and large genomes. The absence of their genomic information has impeded evolutionary studies and genome-based breeding efforts. Here, we present reference genomes for Lilium sargentiae (lily, 35.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China. Electronic address:
Agricultural mulch is beneficial to agricultural production, but it will cause serious environmental pollution. Poly(butylene adipate-co-terephthalate) (PBAT) mulch has the potential to replace PE mulch to reduce the microplastic pollution in farmland soil. To clarify the effects of the aging behavior of PBAT mulch on soil microbial community composition.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
The gut microbiota alterations interact with the pathogenesis and progression of chronic kidney disease (CKD). Probiotics have received wide attention as a potential management in CKD. We investigated the effects of Lactobacillus paracasei N1115 (LP N1115) on intestinal microbiota and related short-chain fatty acids (SCFAs) in end stage kidney disease patients on peritoneal dialysis (PD) in a single-center, prospective, randomized, double-blind, placebo-controlled study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!