This work studied effects of different amounts of rice glutelin (RG) on physicochemical and structural properties of extruded rice starch (ERS) and explored the underlying mechanism of interaction between rice starch and RG upon extrusion processing. The results showed that the addition of RG altered the pasting properties, improved the viscoelastic, and increased the water mobility of ERS. The weight loss of ERS decreased from 71.40 % to 62.61 %, while the degradation temperature increased from 290.48 °C to 296.25 °C as the RG content increased from 0 % to 12 %. The complex index of extruded starch-glutelin complexes significantly elevated from 10.40 % to 35.81 % when RG content increased from 6 % to 12 %. Fourier-transform infrared spectra confirmed that RG interacted with starch via Maillard reactions, and the binding strength between RG and starch was enhanced at a higher RG content. Furthermore, results of rheological property and chemical interactions demonstrated that hydrogen bonding, hydrophobic, and electrostatic interaction were formed between RG and starch during extrusion. In summary, the obtained results of this study can further enrich the theory of starch-protein interactions and show the possibility of RG applied in the extruded starchy foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2022.120513 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!