Background And Aims: Insufficient validation limits the generalizability of deep learning in diagnosing Helicobacter pylori infection with endoscopic images. The aim of this study was to develop a deep learning model for the diagnosis of H pylori infection using endoscopic images and validate the model with internal and external datasets.
Methods: A convolutional neural network (CNN) model was developed based on a training dataset comprising 13,403 endoscopic images from 952 patients who underwent endoscopy at Seoul National University Hospital Gangnam Center. Internal validation was performed using a separate dataset comprised of images of 411 individuals of Korean descent and 131 of non-Korean descent. External validation was performed with the images of 160 patients in Gangnam Severance Hospital. Gradient-weighted class activation mapping was performed to visually explain the model.
Results: In predicting H pylori ever-infected status, the sensitivity, specificity, and accuracy of internal validation for people of Korean descent were .96 (95% confidence interval [CI], .93-.98), .90 (95% CI, .85-.95), and .94 (95% CI, .91-.96), respectively. In the internal validation for people of non-Korean descent, the sensitivity, specificity, and accuracy in predicting H pylori ever-infected status were .92 (95% CI, .86-.98), .79 (95% CI, .67-.91), and .88 (95% CI, .82-.93), respectively. In the external validation cohort, sensitivity, specificity, and accuracy were .86 (95% CI, .80-.93), .88 (95% CI, .79-.96), and .87 (95% CI, .82-.92), respectively, when performing 2-group categorization. Gradient-weighted class activation mapping showed that the CNN model captured the characteristic findings of each group.
Conclusions: This CNN model for diagnosing H pylori infection showed good overall performance in internal and external validation datasets, particularly in categorizing patients into the never- versus ever-infected groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gie.2023.01.007 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Gastroenterology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
Artificial intelligence (AI), with advantages such as automatic feature extraction and high data processing capacity and being unaffected by fatigue, can accurately analyze images obtained from colonoscopy, assess the quality of bowel preparation, and reduce the subjectivity of the operating physician, which may help to achieve standardization and normalization of colonoscopy. In this study, we aimed to explore the value of using an AI-driven intestinal image recognition model to evaluate intestinal preparation before colonoscopy. In this retrospective analysis, we analyzed the clinical data of 98 patients who underwent colonoscopy in Nantong First People's Hospital from May 2023 to October 2023.
View Article and Find Full Text PDFViruses
December 2024
University Hospital of UFMA, Federal University of Maranhao, São Luís 65080-805, Maranhão, Brazil.
Chordomas are a low-to-intermediate-grade slow-growing subtype of sarcoma, but show propensity to grow and invade locally with recurrence and metastasis in 10-40% of cases. We describe the first case of spontaneous regression of a solid tumor (histologically and immunohistochemically proven chordoma) after COVID-19. A female patient with clival chordoma underwent occipitocervical fixation prior to tumor resection.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Shanghai Film Academy, Shanghai University, Shanghai 200072, China.
The advancement of neural radiance fields (NeRFs) has facilitated the high-quality 3D reconstruction of complex scenes. However, for most NeRFs, reconstructing 3D tissues from endoscopy images poses significant challenges due to the occlusion of soft tissue regions by invalid pixels, deformations in soft tissue, and poor image quality, which severely limits their application in endoscopic scenarios. To address the above issues, we propose a novel framework to reconstruct high-fidelity soft tissue scenes from low-quality endoscopic images.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, 1050 Brussels, Belgium.
Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.
View Article and Find Full Text PDFJ Clin Med
January 2025
Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal.
Several artificial intelligence systems based on large language models (LLMs) have been commercially developed, with recent interest in integrating them for clinical questions. Recent versions now include image analysis capacity, but their performance in gastroenterology remains untested. This study assesses ChatGPT-4's performance in interpreting gastroenterology images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!