Electrochemical treatment of organic matter for environmental remediation necessitates the development of cheap and robust electrodes that are chemically and structurally stable. To address this challenging requirement, we demonstrate a new electrochemical approach using a simple copper electrode under cathodic conditions to electrochemically generate reactive nitrosonium ions for the degradation of different classes of synthetic organic dyes. This could be achieved in an aqueous HNO/KNO electrolyte at a relatively low cathodic potential of -0.5 V RHE at room temperature. UV-visible absorption spectroscopy, Raman spectroscopy, liquid chromatography - mass spectrometry and total organic carbon measurements revealed the rapid decolorisation and mineralisation of several dye types such as triarylmethane dyes (crystal violet, cresol red), an azo dye (methyl orange) as well as a sulfur containing thiazine dye (toluidine blue). The total organic carbon content of a 50 mg L methyl orange solution was found to decrease by 83% after 1 h of electrolysis. Promisingly, locally sourced river and creek water samples spiked with 50 mg L methyl orange were also successfully treated for up to 6 cycles at a simple Cu electrode, demonstrating potential for the remediation of polluted waterways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.137821 | DOI Listing |
Anal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey. Electronic address:
Controllable macromolecular architecture formation via polysaccharide integrated ternary copolymerization was explored in the design of amino-functionalized n-alkyl methacrylate ester-based biohybrids. Ternary poly(dimethylaminoethyl methacrylate-co-glycidyl methacrylate-co-hydroxypropyl methacrylate)/sodium-alginate, PDGH/ALG, hybrids were designed using anionic polysaccharide through in-situ radical polymerization. An insight into the effect of ALG on physicochemical structure of ternary hybrids, particularly the interactions between polymeric chains, was created.
View Article and Find Full Text PDFHeliyon
January 2025
College of Chemical Engineering, Zhejiang University of Technology, China.
Titania (TiO) is one of promising photo catalysts for its high ability to resistant photo corrosion and environmental friendliness, but its photocatalytic activity is too low to be used in industry. To find an approach to solve this problem, graphene oxide (GO), tungsten trioxide (WO) and TiO composite with hollow mesoporous structure was prepared by a two-step spray drying method. The composite was used as raw material to constitute a membrane onto ITO glass to form a membrane photo-anode.
View Article and Find Full Text PDFLangmuir
January 2025
Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
Adsorbents with high selectivity and adsorption capacity are of significant interest for the removal of dye pollutants. Herein, we report a facile low-temperature solvothermal synthesis of clew-like CuO/CuO microspheres by using cupric acetate monohydrate as the copper resource and ethylene glycol as the solvent and morphology modulator. The synthesized CuO/CuO microspheres showed high selective adsorption to anionic dyes (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!