Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era.

Acta Biomater

Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia. Electronic address:

Published: March 2023

Fungal infections pose a serious threat to human health and livelihoods. The number and variety of clinically approved antifungal drugs is very limited, and the emergence and rapid spread of resistance to these drugs means the impact of fungal infections will increase in the future unless alternatives are found. Despite the significance and major challenges associated with fungal infections, this topic receives significantly less attention than bacterial infections. A major challenge in the development of fungi-specific drugs is that both fungi and mammalian cells are eukaryotic and have significant overlap in their cellular machinery. This lack of fungi-specific drug targets makes human cells vulnerable to toxic side effects from many antifungal agents. Furthermore, antifungal drug resistance necessitates higher doses of the drugs, leading to significant human toxicity. There is an urgent need for new antifungal agents, specifically those that can limit the emergence of new resistant species. Non-drug nanomaterials have primarily been explored as antibacterial agents in recent years; however, they are also a promising source of new antifungal candidates. Thus, this article reviews current research on the use of inorganic nanoparticles as antifungal agents. We also highlight challenges facing antifungal nanoparticles and discuss possible future research opportunities in this field. STATEMENT OF SIGNIFICANCE: Fungal infections pose a growing threat to human health and livelihood. The rapid spread of resistance to current antifungal drugs has led to an urgent need to develop alternative antifungals. Nanoparticles have many properties that could make them useful antimycotic agents. To the authors' knowledge, there is no published review so far that has comprehensively summarized the current development status of antifungal inorganic nanomaterials, so we decided to fill this gap. In this review, we discussed the state-of-the-art research on antifungal inorganic nanoparticles including metal, metal oxide, transition-metal dichalcogenides, and inorganic non-metallic particle systems. Future directions for the design of inorganic nanoparticles with higher antifungal efficacy and lower toxicity are described as a guide for further development in this important area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2023.01.019DOI Listing

Publication Analysis

Top Keywords

fungal infections
20
inorganic nanoparticles
16
antifungal agents
12
antifungal
11
infections pose
8
threat human
8
human health
8
antifungal drugs
8
rapid spread
8
spread resistance
8

Similar Publications

Fungal periprosthetic joint infections (PJIs) are rare but increasingly recognized complications following total joint arthroplasty (TJA). While remains the most common pathogen, non-albicans species and other fungi, such as , have gained prominence. These infections often present with subtle clinical features and affect patients with significant comorbidities or immunosuppression.

View Article and Find Full Text PDF

The red blood cell (RBC) membrane is unique and crucial for maintaining structural-functional relationships. Maternal smoking induces significant changes in the morphological, rheological, and functional parameters of both maternal and foetal RBCs, mainly due to the continuous generation of the free radicals. The major aim of this study was to follow the consequences of a secondary stressor, like fungal infection, on the already compromised RBC populations.

View Article and Find Full Text PDF

Eumycetoma, a chronic fungal infection caused by , is a neglected tropical disease characterized by tumor-like growths that can lead to permanent disability and deformities if untreated. Predominantly affecting regions in Africa, South America, and Asia, it imposes significant physical, social, and economic burdens. Current treatments, including antifungal drugs like itraconazole, often show variable efficacy, with severe cases necessitating surgical intervention or amputation.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from can elicit immune responses, positioning them as promising acellular vaccine candidates. We characterized EVs from an avirulent cell wall mutant (Δ) and evaluated their protective potential against invasive candidiasis. EVs from the yeast (YEVs) and hyphal (HEVs) forms of the SC5314 wild-type strain were also tested, yielding high survival rates with SC5314 YEV (91%) and YEV immunization (64%).

View Article and Find Full Text PDF

Recently expanded reports of multidrug-resistant fungal infections underscore the need to develop new and more efficient methods for antifungal drug discovery. A ubiquitous problem in natural product drug discovery campaigns is the rediscovery of known compounds or their relatives; accordingly, we have integrated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for structural dereplication and Yeast Chemical Genomics for bioprocess evaluation into a screening platform to identify such compounds early in the screening process. We identified 450 fractions inhibiting and the resistant strains of and among more than 40,000 natural product fractions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!