Microplastics are ubiquitous in all environmental compartments, including food and water. A growing body of evidence suggests the potential health impacts of continuous microplastic ingestion on humans. However, a lack of information on microplastic exposure to humans through drinking water and the high heterogeneity of available data limits advancements in health risk assessments. In the present study, laser direct infrared spectroscopy (LD-IR) was used to determine the occurrence of microplastics in bottled water sold in China. Then, the ingestion level of microplastics through drinking water was estimated. The results showed that the average microplastic abundance in bottled water was 72.32 ± 44.64 items/L, which was higher than that detected in tap water (49.67 ± 17.49 items/L). Overall, the microplastic structures were dominated by films and mainly consisted of cellulose and PVC. Their sizes were concentrated in the range of 10-50 μm, accounting for 67.85 ± 8.40 % of the total microplastics in bottled water and 75.50 % in tap water. The estimated daily intake of microplastics (EDI) by infants through bottled water and tap water was almost twice as high as that by adults, although adults ingested more microplastics. The present results provide valuable data for further assessing human health risks associated with exposure to microplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.161553DOI Listing

Publication Analysis

Top Keywords

bottled water
20
tap water
12
water
11
occurrence microplastics
8
drinking water
8
water high
8
microplastics bottled
8
water estimated
8
microplastics
7
bottled
5

Similar Publications

This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.

View Article and Find Full Text PDF

Disinfection is a critical process to ensure the safety of drinking water. To curb the spread of various bacteria and viruses, disinfectants are extensively employed in communities, hospitals, sewage treatment plants, and other settings. However, disinfectants can produce disinfection by-products (DBPs) that threaten human health.

View Article and Find Full Text PDF

Approaches to mitigate the severity of infections and of immune responses are still needed for the treatment of cystic fibrosis (CF) even with the success of highly effective modulator therapies. Previous studies identified reduced levels of melatonin in a CF mouse model related to circadian rhythm dysregulation. Melatonin is known to have immunomodulatory properties and it was hypothesized that treatment with melatonin would improve responses to bacterial infection in CF mice.

View Article and Find Full Text PDF

As a crucial source of potable water, the quality of water in Shanmei reservoir strongly and directly impacts the safety and well-being of downstream residents. Microorganisms play a pivotal role in the reservoir's resource and energy cycle. However, ecological protection efforts for the Shanmei reservoir have encountered numerous challenges in recent years.

View Article and Find Full Text PDF

ADAMTS4-Specific MR Peptide Probe for the Assessment of Atherosclerotic Plaque Burden in a Mouse Model.

Invest Radiol

January 2025

From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.).

Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!