Recurrent seizures characterize epilepsy, a complicated and multifaceted neurological disease. Several neurological alterations, such as cell death and the growth of gorse fibers, have been linked to epilepsy. The dentate gyrus of the hippocampus is particularly vulnerable to neuronal loss and abnormal neuroplastic changes in the pentylenetetrazol (PTZ) kindling model. Biochanin A has potent anti-inflammatory and antioxidant properties, according to previous evidence and its possible impact in epilepsy has never previously been claimed. The current work aimed to investigate biochanin A's anti-epileptic potential in PTZ-induced kindling model in mice. Chronic epilepsy was established in mice by giving PTZ (35 mg/kg, i.p) every other day for 21 days. Biochanin A (20 mg/kg) was given daily till the end of the experiment. Biochanin A pretreatment significantly reduced the severity of epileptogenesis by 51.7% and downregulated the histological changes in the CA3 region of the hippocampus by 42% along with displaying antioxidant/anti-inflammatory efficacy through upregulated hemeoxygenase-1 (HO-1) and, erythroid 2-related factor 2 (Nrf2) levels in the brain by 1.9-fold and 2-fold respectively, parallel to reduction of malondialdehyde (MDA), myeloperoxidase (MPO), glial fibrillary acidic protein (GFAP) and L-glutamate/IL-1β/TXNIB/NLRP3 axis. Moreover, biochanin A suppressed neuronal damage by reducing the astrocytes' activation and significantly attenuated the PTZ-induced increase in LC3 levels by 55.5%. Furthermore, molecular docking findings revealed that BIOCHANIN A has a higher affinity for phosphoinositide 3-kinase (PI3k), threonine kinase2 (AKT2), and mammalian target of rapamycin complex 1 (mTORC1) indicating the neuroprotective and anti-epileptic characteristics of biochanin A in the brain tissue of PTZ-kindled mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.109711DOI Listing

Publication Analysis

Top Keywords

biochanin
8
kindling model
8
neuroprotection impact
4
impact biochanin
4
biochanin pentylenetetrazol-kindled
4
mice
4
pentylenetetrazol-kindled mice
4
mice targeting
4
targeting nlrp3
4
nlrp3 inflammasome/txnip
4

Similar Publications

Biochanin-A: A Potential Candidate for the Treatment of Alzheimer's Disease.

Curr Pharm Biotechnol

February 2025

Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH#19 Delhi-Mathura Highway, Chaumuhan, Mathura, 281406 UP, India.

Alzheimer's disease (AD), the most common form of dementia, is a multifactorial neurological condition characterized by progressive loss of memory and learning, uncontrollable movement, difficulty processing visual images, and impairment of reasoning and/or judgment skills. Although the exact cause of AD is still unknown, recent evidence suggests that environmental, lifestyle, and genetic factors are common contributors to the disease's progression. Pathophysiological features of AD include amyloid beta (Aβ) accumulation, abnormal deposition of neuritic plaques and neurofibrile tangles, cholinergic dysfunction, neuroinflammation, and oxidative stress burden along with mitochondrial dysfunction.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the protective effects of biochanin A (BCA) on cardiac hypertrophy and to elucidate the underlying molecular mechanisms. The research question was whether BCA can reverse heart dysfunction and attenuate cardiomyocyte hypertrophy induced by pressure overload and AngII, respectively, and how it interacts with the NLRP3 pyroptosis pathway to achieve these effects.

Methods: We employed an animal model of pressure overload-induced cardiac hypertrophy and an in vitro model of AngII-induced cardiomyocyte hypertrophy to assess the effects of BCA.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is an overriding concern for many researchers and physicians as it causes unspeakable suffering and anguish among patients. Renal fibrosis is the hallmark of end-stage kidney disease (ESKD), which can progress to death. The super-fuels for renal fibrosis are oxidative stress and inflammation.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Doxorubicin (DOX)-induced chemobrain has been reported in several studies. Its main culprit is the induction of massive amounts of reactive oxygen species (ROS), hence triggering damage to brain tissues and thus leading to neuroinflammation. Biochanin A (BIO-A) is known to be an antioxidant, anti-inflammatory, and neuroprotective agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!