Kidney ischemia/reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI) occurring frequently under major surgeries and sepsis. This study aimed to evaluate the effect of Eprosartan, an angiotensin II receptor type-1 (AT-1) antagonist, on the kidney I/R rat model. Male Wistar rats (n = 24) were allocated into (i) Sham, (ii) Eprosartan, (iii) I/R, and (iv) Eprosartan + I/R groups. Animals in the last group received a single dose of Eprosartan (60 mg/kg) 1 h before kidney I/R. Renal oxidant/antioxidant, inflammatory (NF-κB p65, COX-2, IL-6, TNF-α), and apoptotic (caspase-3, Bax, Bcl2) factors along with Sirtuin 1, Klotho, and mitochondrial biogenesis (PGC-1α, and Sirtuin 3) factors were evaluated by Western blotting. Significant recovery of kidney function and increased levels of antioxidant markers were observed in the Eprosartan + I/R group. The Eprosartan anti-inflammatory activity was demonstrated by significant downregulation of NF-κB and its downstream pro-inflammatory factors. Eprosartan pretreatment could also abolish I/R-induced alterations in the apoptotic parameters. Moreover, Eprosartan + I/R rats significantly presented higher levels of Sirtuin 1 content. In conclusion, Eprosartan exhibited nephroprotective effects against kidney damage induced by I/R in rats by decreasing oxidative stress, inflammatory, and apoptotic pathways along with increasing Sirtuin1 level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2023.109690 | DOI Listing |
Mol Cell Biochem
January 2025
Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia.
As several decades of research have shown the cardioprotective effects of angiotensin-converting enzyme (ACE) inhibitors alone or in combination with diuretics, we were interested in investigating the effects of subchronic therapy of these drugs on ischemia-reperfusion (I/R) damage to the heart, as well as their influence on oxidative status. The research was conducted on 40 spontaneously hypertensive male Wistar Kyoto rats, divided into 4 groups. Animals were treated for four weeks with 10 mg/kg/day zofenopril alone or in combination with hydrochlorothiazide, indapamide and spironolactone per os.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara 06560, Turkey.
Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO) affects systemic anti-inflammatory response and inflammation.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, PR China. Electronic address:
Background: Fangji Huangqi Decoction (FJHQD), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in improving renal function. However, the interaction of bioactives from FJHQD with the targets involved in acute renal injury (AKI) has not been elucidated yet.
Purpose: A network pharmacology-based approach combined with molecular docking and in vitro and in vivo validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of FJHQD against AKI.
Sci Rep
December 2024
Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Renal ischemia-reperfusion (I/R) injury is a common clinical factor for acute kidney injury (AKI). A current study investigated the renoprotective effects of the trinitroglycerine (TNG) combination with chitosan nanoparticles (CNPs) on renal I/R-induced AKI. Rats were randomly assigned to five groups (n = 8/group): Sham, I/R, TNG (50 mg/kg) + I/R, CNPs (60 mg/kg) + I/R, and TNG-CNPs + I/R.
View Article and Find Full Text PDFWorld J Gastrointest Surg
December 2024
State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
Background: Intestinal ischemiareperfusion (I/R) injury (II/RI) is a critical condition that results in oxidative stress, inflammation, and damage to multiple organs. Zinc, an essential trace element, offers protective benefits in several tissues during I/R injury, but its effects on intestinal II/RI remain unclear.
Aim: To investigate the effects of zinc pretreatment on II/RI and associated multiorgan damage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!