Hypothesis: Flotation of water-soluble KCl and NaCl minerals in brines is significant for K-fertilizer production, but its mechanism is controversial. Dissolved salt ions are expected to change the physicochemical properties of solvents, interfaces, and collector colloids, thereby affecting flotation significantly.
Experiments: Flotation experiments of KCl and NaCl crystals in brines were conducted using potassium and sodium laurates as collectors. Contact angle (CA) and surface tension measurements, X-ray photoelectron spectroscopy (XPS) analysis, and molecular dynamics simulations (MD) were applied to gain a molecular understanding of changing interfacial properties and crystal-collector colloid interactions in the presence of dissolved ions in terms of salt flotation.
Findings: While K ions activate the NaCl crystal flotation, Na ions depress the KCl crystal flotation, in agreement with the studies of CA, XPS, and MD results with these crystals. XPS results showed no collector adsorption at crystal surfaces which is a requirement of conventional flotation and presents a new theoretical challenge. We argue the crucial role of ion specificity: Na-laurate colloids adsorb at the bubble surface as a monolayer but solvent-separated from KCl crystals, inhibiting their flotation, or in interactive contact with NaCl crystals, enhancing their flotation. Increasing K concentration weakens NaCl crystal hydration, increasing Na-laurate colloid attraction with crystals for better flotation. The Contact Interactive Collector Colloid (CICC) and Solvent-separated Interactive Collector Colloid (SICC) hydration states are critical to salt crystal flotation via collector colloid-crystal attraction by dispersion forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.01.038 | DOI Listing |
Materials (Basel)
January 2025
School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
To investigate the influence of alkali metal compounds in different forms on the sintering mineralization process of iron ore, the basic sintering characteristics of iron ore with alkali metal contents ranging from 0 to 4% were measured using the micro-sintering method, and the influence mechanism was analyzed using thermodynamic analysis and first-principles calculations. The results showed that (1) the addition of KCl/NaCl increased the lowest assimilation temperature (LAT) and the index of liquid-phase fluidity (ILF), while that of KCO/NaCO decreased the LAT but increased the ILF of iron ore. (2) The pores formed by the volatilization of KCl/NaCl suppressed the diffusion of Fe and Ca, which inhibited the formation of silico-ferrite of calcium and aluminum (SFCA).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey. Electronic address:
Controllable macromolecular architecture formation via polysaccharide integrated ternary copolymerization was explored in the design of amino-functionalized n-alkyl methacrylate ester-based biohybrids. Ternary poly(dimethylaminoethyl methacrylate-co-glycidyl methacrylate-co-hydroxypropyl methacrylate)/sodium-alginate, PDGH/ALG, hybrids were designed using anionic polysaccharide through in-situ radical polymerization. An insight into the effect of ALG on physicochemical structure of ternary hybrids, particularly the interactions between polymeric chains, was created.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
, the primary pathogen that causes ginseng Alternaria leaf blight disease, can lead to a 20-30% reduction in ginseng yield. WD40 repeat-containing proteins are evolutionarily conserved proteins with diverse functions between different organisms. In this study, we characterized the roles of a WD40 repeat-containing protein in .
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
Electroosmosis reduces the available energy from ion transport arising due to concentration gradients across ion-exchange membranes. This work builds on previous efforts to describe the electroosmosis, the permselectivity and the apparent transport number of a membrane, and we show new measurements of concentration cells with the Selemion CMVN cation-exchange membrane and single-salt solutions of HCl, LiCl, NaCl, MgCl, CaCl and NHCl. Ionic transport numbers and electroosmotic water transport relative to the membrane are efficiently obtained from a relatively new permselectivity analysis method.
View Article and Find Full Text PDFHypertension
January 2025
Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).
Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!