Reusable self-floating carriers recover heavy metals from industrial wastewater through heterogeneous nucleation for resource reuse.

J Hazard Mater

Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. Electronic address:

Published: April 2023

Coagulation-flocculation in industrial wastewater treatment drives environmental pollution from landfilling heavy metal-laden sludge. Efficient separation of the sludge is crucial for cost-effective metal recovery. This study explored a new separation method of Cu, Ni, Zn and Cr via self-floating metal hydroxides assisted by hollow glass microsphere (HGM) carriers. The amount of OH was stoichiometric to the positive charges of metal ions, mixed with 1 mg mL HGM, causing metal hydroxides to attach to HGM surface via heterogeneous nucleation. The self-floating system removed 37.5% and 14.0% more metals than sedimentation at 50 and 200 mg L metal concentrations. HGM additions increased the particle size of metal hydroxides by up to 12.5 times to that of HGM at 18.8 ± 1.1 µm, benefiting their solid-liquid separation. By pumping the wastewater downward in column reactor at velocities equal to or less than the self-floating sludge, 96.4% metals were removed in continuous flow. The recovery rates of HGM and metals reached 92.0 ± 2.2% and 92.7 ± 3.2%, and the concentration of the recovered metal reached 19,339 ± 394 mg L for potential reutilization in industrial electroplating. This research investigated a new separation strategy based on solid self-flotation for sustainable treatment of metal-laden wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.130760DOI Listing

Publication Analysis

Top Keywords

metal hydroxides
12
industrial wastewater
8
heterogeneous nucleation
8
metal
7
hgm
6
reusable self-floating
4
self-floating carriers
4
carriers recover
4
recover heavy
4
metals
4

Similar Publications

Kirkendall Effect-Mediated Transformation of ZIF-67 to NiCo-LDH Nanocages as Oxidase Mimics for Multicolor Point-of-Care Testing of β-Galactosidase Activity and .

Anal Chem

January 2025

Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.

Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Chemical associations of selenium oxyanions in metal oxides derived from layered double hydroxides: Implication for the immobilization of radionuclides.

Environ Res

January 2025

School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8050, Japan; Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

Layered double hydroxides (LDHs) can effectively stabilize Se oxyanions, yet the thermal stability of Se oxyanions incorporated into LDHs remains unclear. In this study, calcination products of three types of LDHs loaded with SeO2- 3 or SeO2-4 were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray absorption fine structure spectroscopy (XAFS) and leaching tests. It has been found that SeO2-4 can be reduced to SeO2- 3 in the Fe-containing LDHs after calcination at temperatures above 450 °C.

View Article and Find Full Text PDF

Homologous metal-organic complexes reconstructed oxy-hydroxide heterostructures as efficient oxygen evolution electrocatalysts.

J Colloid Interface Sci

January 2025

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 China. Electronic address:

It is imperative to investigate more cost-effective, long-lasting, efficient, and reliable non-noble metal electrocatalysts for the oxygen evolution reaction (OER) in hydrogen production via water splitting. Metal-organic complexes have been extensively researched and utilized for this purpose, yet their transformation in this process remains intriguing and underexplored. To enable a comprehensive comparison, we synthesized three types of metal-organic complexes with varying morphologies using the same raw material.

View Article and Find Full Text PDF

With high microporosity, good dispersibility, excellent specific surface area and large content surface functional group, hydrochar demonstrates significant advantages and strong affinity towards pollutants in water. Modification method plays a significant role for anion adsorption by modified hydrochar, layered double hydroxide (LDH) modified hydrocarbons (Mg/Al-LDH@HC-HCl) have been synthesized through a one-step hydrothermal approach and activated with hydrochloric acid in this paper. The physical and chemical characteristics of the hydrochar, both before and after modification, are analyzed using BET, SEM-EDS, TEM, XRD, FTIR, and XPS to explore the phosphate adsorption mechanisms.

View Article and Find Full Text PDF

A novel biochar material with magnetic modification by MnFeO and surficial hydroxyl grafting (h-MFO-BC) was synthesized for capturing HMs (Cd, Pb and Cu) and their competition in composite systems was investigated. The modification of hydroxyl considerably improved the adsorption capacity of HMs. Chemisorption and monolayer and homogeneous reaction dominated adsorption processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!