Single-atom catalysts have been paid more attention to improving sluggish reaction kinetics and anchoring polysulfide for lithium-sulfur (Li-S) batteries. It has been demonstrated that -block single-atom elements in the fourth period can chemically interact with the local environment, leading to effective adsorption and catalytic activity toward lithium polysulfides. Enlightened by theoretical screening, for the first time, we design novel single-atom Nb catalysts toward improved sulfur immobilization and catalyzation. Calculations reveal that Nb-N active moiety possesses abundant unfilled antibonding orbitals, which promotes d-p hybridization and enhances anchoring capability toward lithium polysulfides via a "trapping-coupling-conversion" mechanism. The Nb-SAs@NC cell exhibits a high capacity retention of over 85% after 1000 cycles, a superior rate performance of 740 mA h g at 7 C, and a competitive areal capacity of 5.2 mAh cm (5.6 mg cm). Our work provides a new perspective to extend cathodes enabling high-energy-density Li-S batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c10345 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, NSW, 2500, Australia.
Rechargeable batteries are central to modern energy storage systems, from portable electronics to electric vehicles. The cathode material, a critical component, largely dictates a battery's energy density, capacity, and overall performance. This review focuses on the application of operando X-ray absorption spectroscopy (XAS) to study cathode materials in Li-ion, Na-ion, Li-S, and Na-S batteries.
View Article and Find Full Text PDFSmall
January 2025
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs.
View Article and Find Full Text PDFAdv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
Hard carbon (HC) materials are suitable anodes for sodium-ion batteries (SIBs) but still suffer from insufficient initial Coulombic efficiency (ICE). Promoting sodium storage via the pore filling mechanism is an effective way to improve the ICE, and the key here is regulating the pore structures of HC. In this work, coal-derived HC is successfully engineered with abundant accessible closed nanopores by treating the coal precursors with a facile destructive oxidation strategy.
View Article and Find Full Text PDFChem Asian J
January 2025
Shaanxi University of Technology, School of Materials Science and Engineering, No.1 East Ring Rd., Hantai District, 723001, Hanzhong, CHINA.
Lithium-sulfur (Li-S) batteries are promising energy storage devices due to their high theoretical energy density and cost-effectiveness. However, the shuttle effect of polysulfides during the charging and discharging processes leads to a rapid decline in capacity, thereby restricting their application in energy storage. The separator, a crucial component of Li-S batteries, facilitates the transport of Li+ ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!