The mechanical properties of red blood cells (RBCs) play key roles in their biological functions in microcirculation. In particular, RBCs must deform significantly to travel through microcapillaries with sizes comparable with or even smaller than their own. Although the dynamics of RBCs in microcapillaries have received considerable attention, the effect of membrane viscoelasticity has been largely overlooked. In this work, we present a computational study based on the boundary integral method and thin-shell mechanics to examine how membrane viscoelasticity influences the dynamics of RBCs flowing through straight and constricted microcapillaries. Our results reveal that the cell with a viscoelastic membrane undergoes substantially different motion and deformation compared with results based on a purely elastic membrane model. Comparisons with experimental data also suggest the importance of accounting for membrane viscoelasticity to properly capture the transient dynamics of an RBC flowing through a microcapillary. Taken together, these findings demonstrate the significant effects of membrane viscoelasticity on RBC dynamics in different microcapillary environments. The computational framework also lays the groundwork for more accurate quantitative modeling of the mechanical response of RBCs in their mechanotransduction process in subsequent investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257124PMC
http://dx.doi.org/10.1016/j.bpj.2023.01.010DOI Listing

Publication Analysis

Top Keywords

membrane viscoelasticity
20
effects membrane
8
red blood
8
dynamics microcapillary
8
dynamics rbcs
8
membrane
6
viscoelasticity
5
dynamics
5
rbcs
5
viscoelasticity red
4

Similar Publications

Resonance-Induced Therapeutic Technique for Skin Cancer Cells.

Ultrasound Med Biol

January 2025

Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand. Electronic address:

Objective: This study aims to evaluate the viability of a hypothesis for selective targeting of skin cancer cells by exploiting the spectral gap with healthy cells using analytical and numerical simulation.

Methods: The spectral gap was first identified using a viscoelastic dynamic model, with the physical and mechanical properties of healthy and cancerous skin cells deduced from previous experimental studies conducted on cell lines. The outcome of the analytical simulation was verified numerically using modal and harmonic analysis.

View Article and Find Full Text PDF

The adhesion mechanism of mucoadhesive tablets with dissimilar chain flexibility on viscoelastic hydrogels.

Mater Today Bio

February 2025

Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary.

Mucosal membranes with strong variability in their viscoelastic properties line numerous organs and are often targeted by mucoadhesive formulations, e.g., highly swellable hydroxypropylmethylcellulose (HPMC) and slightly cross-linked poly(acrylic acid) (PAA) tablets.

View Article and Find Full Text PDF

Nano-viscosimetry analysis of membrane disrupting peptide magainin2 interactions with model membranes.

Biophys Chem

January 2025

La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia. Electronic address:

The rapid spread of antibiotic-resistant strains of bacteria has created an urgent need for new alternative antibiotic agents. Membrane disrupting antimicrobial peptides (AMPs): short amino acid sequences with bactericidal and fungicidal activity that kill pathogens by permeabilizing their plasma membrane may offer a solution for this global health crisis. Magainin 2 is an AMP secreted by the African clawed frog (Xenopus laevis) that is described as a toroidal pore former membrane disrupting AMP.

View Article and Find Full Text PDF

Descemet's membrane (DM) detachment is a significant, if rare, risk of intracameral injection of viscoelastic to treat hypotony after glaucoma filtration surgery. We describe two cases of DM detachment following inadvertent injection of viscoelastic into the posterior stroma and the techniques used for their repair. In both cases, conventional air tamponade failed to resolve the detachment, and further surgical intervention was required.

View Article and Find Full Text PDF

Pre-assembled nanospheres in mucoadhesive microneedle patch for sustained release of triamcinolone in the treatment of oral submucous fibrosis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.

Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!