Objective: To define a predictive Artificial Intelligence (AI) algorithm based on the integration of a set of biopsy-based microRNAs expression data and radiomic features to understand their potential impact in predicting clinical response (CR) to neoadjuvant radio-chemotherapy (nRCT). The identification of patients who would truly benefit from nRCT for Locally Advanced Rectal Cancer (LARC) could be crucial for an improvement in a tailored therapy.
Methods: Forty patients with LARC were retrospectively analyzed. An MRI of the pelvis before and after nRCT was performed. In the diagnostic biopsy, the expression levels of 7 miRNAs were measured and correlated with the tumor response rate (TRG), assessed on the surgical sample. The accuracy of complete CR (cCR) prediction was compared for i) clinical predictors; ii) radiomic features; iii) miRNAs levels; and iv) combination of radiomics and miRNAs.
Results: Clinical predictors showed the lowest accuracy. The best performing model was based on the integration of radiomic features with miR-145 expression level (AUC-ROC = 0.90). AI algorithm, based on radiomics features and the overexpression of miR-145, showed an association with the TRG class and demonstrated a significant impact on the outcome.
Conclusion: The pre-treatment identification of responders/NON-responders to nRCT could address patients to a personalized strategy, such as total neoadjuvant therapy (TNT) for responders and upfront surgery for non-responders. The combination of radiomic features and miRNAs expression data from images and biopsy obtained through standard of care has the potential to accelerate the discovery of a noninvasive multimodal approach to predict the cCR after nRCT for LARC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00464-022-09851-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!