This work investigates the medical image denoising (MID) application of the dual denoising network (DudeNet) model for chest X-ray (CXR). The DudeNet model comprises four components: a feature extraction block with a sparse mechanism, an enhancement block, a compression block, and a reconstruction block. The developed model uses residual learning to boost denoising performance and batch normalization to accelerate the training process. The name proposed for this model is dual convolutional medical image-enhanced denoising network (DCMIEDNet). The peak signal-to-noise ratio (PSNR) and structure similarity index measurement (SSIM) are used to assess the MID performance for five different additive white Gaussian noise (AWGN) levels of σ = 15, 25, 40, 50, and 60 in CXR images. Presented investigations revealed that the PSNR and SSIM offered by DCMIEDNet are better than several popular state-of-the-art models such as block matching and 3D filtering, denoising convolutional neural network, and feature-guided denoising convolutional neural network. In addition, it is also superior to the recently reported MID models like deep convolutional neural network with residual learning, real-valued medical image denoising network, and complex-valued medical image denoising network. Therefore, based on the presented experiments, it is concluded that applying the DudeNet methodology for DCMIEDNet promises to be quite helpful for physicians.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-022-02731-9 | DOI Listing |
Sci Rep
December 2024
College of Information Engineering, SuQian University, SuQian, 223800, China.
The safety and reliability of rotating machinery hinge significantly on the proper functioning of rolling bearings. In the last few years, there have been significant advances in the algorithms for intelligent fault diagnosis of bearings. However, the vibration signals collected by machines are inevitably affected by irrelevant noise because of the complex working environments of bearings.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
Vertebral collapse (VC) following osteoporotic vertebral compression fracture (OVCF) often requires aggressive treatment, necessitating an accurate prediction for early intervention. This study aimed to develop a predictive model leveraging deep neural networks to predict VC progression after OVCF using magnetic resonance imaging (MRI) and clinical data. Among 245 enrolled patients with acute OVCF, data from 200 patients were used for the development dataset, and data from 45 patients were used for the test dataset.
View Article and Find Full Text PDFSci Rep
December 2024
Computer Science Department, Saarland University, Saarbrücken, Germany.
Estimating the numbers and whereabouts of internally displaced people (IDP) is paramount to providing targeted humanitarian assistance. In conflict settings like the ongoing Russia-Ukraine war, on-the-ground data collection is nevertheless often inadequate to provide accurate and timely information. Satellite imagery may sidestep some of these challenges and enhance our understanding of the IDP dynamics.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computer Science, Birzeit University, P.O. Box 14, Birzeit, West Bank, Palestine.
Accurate classification of logos is a challenging task in image recognition due to variations in logo size, orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated promising results in handling such tasks. However, their performance is highly dependent on optimal hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!