Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The diagnosis of prostate cancer (PCa) depends on the evaluation of core needle biopsies by trained pathologists. Artificial intelligence (AI) derived models have been created to address the challenges posed by pathologists' increasing workload, workforce shortages, and variability in histopathology assessment. These models with histopathological parameters integrated into sophisticated neural networks demonstrate remarkable ability to identify, grade, and predict outcomes for PCa. Though the fully autonomous diagnosis of PCa remains elusive, recently published data suggests that AI has begun to serve as an initial screening tool, an assistant in the form of a real-time interactive interface during histological analysis, and as a second read system to detect false negative diagnoses. Our article aims to describe recent advances and future opportunities for AI in PCa histopathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.urolonc.2022.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!