Metabarcoding reveals high genetic diversity of harmful algae in the coastal waters of Texas, Gulf of Mexico.

Harmful Algae

Department of Oceanography, Texas A&M University, College Station, TX 77843, USA. Electronic address:

Published: January 2023

AI Article Synopsis

  • Environmental-DNA (eDNA) metabarcoding is a quick and efficient method for studying microplankton diversity, particularly focusing on harmful algal bloom (HAB) species in the Gulf of Mexico.
  • During a study after Hurricane Harvey in September-October 2017, researchers found a surprisingly high number of harmful algal species, including five that were new to the region, using metadata generated from specific genetic markers of the 18S rDNA gene.
  • The study highlighted that different genetic markers (V4 and V8-V9) provided varying levels of species resolution, suggesting that no single marker is sufficient for thorough monitoring of HABs, and that multiple markers should be employed for complete species differentiation.

Article Abstract

Environmental-DNA (eDNA) for metabarcoding is a rapid and effective means to investigate microplankton community composition and species diversity. The objective of this study was to examine the genetic diversity of the phytoplankton community in the Gulf of Mexico, with particular emphasis on harmful algal bloom species. Samples were collected at stations along the coast of Texas in September-October 2017 that were inundated by low salinity waters in the aftermath of Hurricane Harvey. Metabarcodes were generated from the eDNA targeting both the V4 and V8-V9 regions of the 18S rDNA gene. Evaluation of the metabarcodes revealed an unexpectedly high number of harmful algal species during this short period, including five that had not been documented in this region previously. A total of 36 harmful algal species could be differentiated based on V4 and V8-V9 metabarcode markers. Using a phylogenetic approach, the taxonomic resolution of each marker differed and not all species could be differentiated using solely one marker. The V4 region resolved species within some genera (e.g., Heterocapsa), while the V8-V9 marker was necessary to resolve species within other genera (e.g., Chattonella). In other cases, species differentiation within a genus required a combination of both markers (e.g., Prorocentrum, Karenia), or another marker will be needed to resolve all species (e.g., Alexandrium, Dinophysis). We conclude that no single marker can delineate all species, so it is recommended HAB monitoring programs use more than one marker. Overall, the observed diversity of HAB species along the Texas coast using metabarcoding exceeded reports from other parts of the world.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2022.102368DOI Listing

Publication Analysis

Top Keywords

harmful algal
12
species
11
genetic diversity
8
gulf mexico
8
algal species
8
species differentiated
8
species genera
8
resolve species
8
marker
6
metabarcoding reveals
4

Similar Publications

The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.

View Article and Find Full Text PDF

Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by and , remain underexplored.

View Article and Find Full Text PDF

This study reports the first documented accumulation of lyngbyatoxin-a (LTA), a cyanotoxin produced by marine benthic cyanobacteria, in edible shellfish in Aotearoa New Zealand. The study investigates two bloom events in 2022 and 2023 on Waiheke Island, where hundreds of tonnes of marine benthic cyanobacterial mats (mBCMs) washed ashore each summer. Genetic analysis identified the cyanobacterium responsible for the blooms as sp.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) formed by toxic microalgae have seriously threatened marine ecosystems and food safety and security in recent years. Among them, has attracted the attention of scientists and society due to its acute and rapid neurotoxicity in mice. Herein, the growth and gymnodimine A (GYM-A) production of were investigated in diverse culture systems with different surface-to-volume (S/V) ratios and nitrogen/phosphorus concentrations.

View Article and Find Full Text PDF

Harmful algal biotoxins in the marine environment are a threat to human food safety due to their bioaccumulation in bivalve shellfish. Whilst official control monitoring provides ongoing risk management for regulated toxins in live bivalve molluscs, no routine monitoring system is currently in operation in the UK for other non-regulated toxins. To assess the potential presence of such compounds, a systematic screen of bivalve shellfish was conducted throughout Great Britain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!