Transcriptome-referenced association study provides insights into the regulation of oil and fatty acid biosynthesis in Torreya grandis kernel.

J Adv Res

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Published: August 2024

Introduction: Torreya grandis is a gymnosperm belonging to Taxodiaceae. As an economically important tree, its kernels are edible and rich in oil with high unsaturated fatty acids, such as sciadonic acid. However, the kernels from different T. grandis landraces exhibit fatty acid and oil content variations.

Objectives: As a gymnosperm, does T. grandis have special regulation mechanisms for oil biosynthesis? The aim of this study was to dissect the genetic architecture of fatty acid and oil content and the underlying mechanism in T. grandis.

Methods: We constructed a high integrity reference sequence of expressed regions of the genome in T. grandis and performed transcriptome-referenced association study (TRAS) for 10 fatty acid and oil traits of kernels in the 170 diverse T. grandis landraces. To confirm the TRAS result, we performed functional validation and molecular biology experiments for oil significantly associated genes.

Results: We identified 41 SNPs from 34 transcripts significantly associated with 7 traits by TRAS (-log (P) greater than 6.0). Results showed that LOB domain-containing protein 40 (LBD40) and surfeit locus protein 1 (SURF1) may be indirectly involved in the regulation of oil and sciadonic acid biosynthesis, respectively. Moreover, overexpression of TgLBD40 significantly increased seed oil content. The nonsynonymous variant in the TgLBD40 coding region discovered by TRAS could alter the oil content in plants. Pearson's correlation analysis and dual-luciferase assay indicated that TgLBD40 positively enhanced oil accumulation by affecting oil biosynthesis pathway genes, such as TgDGAT1.

Conclusion: Our study provides new insights into the genetic basis of oil biosynthesis in T. grandis and demonstrates that integrating RNA sequencing and TRAS is a powerful strategy to perform association study independent of a reference genome for dissecting important traits in T. grandis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331172PMC
http://dx.doi.org/10.1016/j.jare.2023.01.007DOI Listing

Publication Analysis

Top Keywords

fatty acid
16
oil content
16
oil
13
association study
12
acid oil
12
transcriptome-referenced association
8
study insights
8
regulation oil
8
acid biosynthesis
8
grandis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!