Pathogenicity and fungicide sensitivity of Phytophthora parvispora, a new pathogen causing gummosis and root rot disease on citrus trees.

Microb Pathog

Center for Crop and Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia. Electronic address:

Published: February 2023

In 2021, pomelo (Citrus grandi) trees grown in Tuyen Quang and Phu Tho in northern Vietnam suffered from leaf yellowing, gummosis on stems, brown rot on fruit, and black rot on roots. Based on morphological and sequence analysis of the ITS and cox1 gene regions, the pathogen causing gummosis and root rot of citrus trees was identified as Phytophthora parvispora. Pathogenicity assays using mycelial plugs and zoospore suspension showed that P. parvispora induces disease symptoms on both the upper and lower parts of various citrus trees, including pomelo, orange (C. sinensis), and lime (C. aurantiifolia). This is the first report of P. parvispora as the causative agent of gummosis and root rot on various citrus trees in South-East Asia as well as in Vietnam. Further, P. parvispora was sensitive to all tested fungicides, including mancozeb, chlorothalonil, fosetyl aluminium, potassium phosphonate, and dimethomorph. These findings will have important implications for the effective management of gummosis and root rot disease of citrus trees.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2023.105986DOI Listing

Publication Analysis

Top Keywords

citrus trees
20
gummosis root
16
root rot
16
phytophthora parvispora
8
pathogen causing
8
causing gummosis
8
rot disease
8
disease citrus
8
rot citrus
8
rot
6

Similar Publications

Circadian- and Light-Driven Rhythmicity of Interconnected Gene Networks in Olive Tree.

Int J Mol Sci

January 2025

Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy.

A circadian clock (CC) has evolved in plants that synchronizes their growth and development with daily and seasonal cycles. A properly functioning circadian clock contributes to increasing plant growth, reproduction, and competitiveness. In plants, continuous light treatment has been a successful approach for obtaining novel knowledge about the circadian clock.

View Article and Find Full Text PDF

Analysis of the Distribution Pattern and Prophage Types in Asiaticus 'Cuimi' Kumquat.

Plants (Basel)

December 2024

National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.

The 'Cuimi' kumquat is a unique citrus cultivar known for its thin, crisp pulp and sweet, aromatic flavor. In addition to its use in fresh consumption and processing, this variety exhibits certain medicinal properties. This study aims to investigate the genetic diversity of the Huanglongbing (HLB) bacterium across different tissues of the 'Cuimi' kumquat, offering a theoretical basis for understanding the HLB epidemic in Dechang County, Sichuan.

View Article and Find Full Text PDF

The citrus red mite (CRM), Panonychus citri (McGregor) (Acari: Tetranychidae), a worldwide pest chiefly infesting Citrus plants, has spread from Southern China to Northern China. Little information is known about the population performance of CRM on the plants except for citrus trees and pear trees. In order to evaluate the extent of damage might caused by CRM to the fruit trees cultivated in Northern China, the performance of CRM on four Rosaceae species, including three main fruit tree species (pear-Pyrus pyrifolia Nakai cv.

View Article and Find Full Text PDF

The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives.

View Article and Find Full Text PDF

The species complex (FLSC) currently comprises 11 phylogenetic species, including accepted names such as , , and , which have mostly been reported in association with citrus and coffee. Many varieties were documented by Wollenweber & Reinking (1935), which is indicative of a wider diversity of species within this group. The lack of type material in some cases, especially for the older names, means that definition by molecular phylogeny is very difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!