A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ATFE-Net: Axial Transformer and Feature Enhancement-based CNN for ultrasound breast mass segmentation. | LitMetric

ATFE-Net: Axial Transformer and Feature Enhancement-based CNN for ultrasound breast mass segmentation.

Comput Biol Med

School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China. Electronic address:

Published: February 2023

Breast mass is one of the main clinical symptoms of breast cancer. Recently, many CNN-based methods for breast mass segmentation have been proposed. However, these methods have difficulties in capturing long-range dependencies, causing poor segmentation of large-scale breast masses. In this paper, we propose an axial Transformer and feature enhancement-based CNN (ATFE-Net) for ultrasound breast mass segmentation. Specially, an axial Transformer (Axial-Trans) module and a Transformer-based feature enhancement (Trans-FE) module are proposed to capture long-range dependencies. Axial-Trans module only calculates self-attention in width and height directions of input feature maps, which reduces the complexity of self-attention significantly from O(n) to O(n). In addition, Trans-FE module can enhance feature representation by capturing dependencies between different feature layers, since deeper feature layers have richer semantic information and shallower feature layers have more detailed information. The experimental results show that our ATFE-Net achieved better performance than several state-of-the-art methods on two publicly available breast ultrasound datasets, with Dice coefficient of 82.46% for BUSI and 86.78% for UDIAT, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106533DOI Listing

Publication Analysis

Top Keywords

breast mass
16
axial transformer
12
mass segmentation
12
feature layers
12
feature
8
transformer feature
8
feature enhancement-based
8
enhancement-based cnn
8
ultrasound breast
8
long-range dependencies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!