Klarigi: Characteristic explanations for semantic biomedical data.

Comput Biol Med

College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, UK; Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, UK; NIHR Experimental Cancer Medicine Centre, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, UK; NIHR Biomedical Research Centre, UK; MRC Health Data Research UK (HDR UK), Midlands, UK; University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK.

Published: February 2023

Annotation of biomedical entities with ontology classes provides for formal semantic analysis and mobilisation of background knowledge in determining their relationships. To date, enrichment analysis has been routinely employed to identify classes that are over-represented in annotations across sets of groups, such as biosample gene expression profiles or patient phenotypes, and is useful for a range of tasks including differential diagnosis and causative variant prioritisation. These approaches, however, usually consider only univariate relationships, make limited use of the semantic features of ontologies, and provide limited information and evaluation of the explanatory power of both singular and grouped candidate classes. Moreover, they are not designed to solve the problem of deriving cohesive, characteristic, and discriminatory sets of classes for entity groups. We have developed a new tool, called Klarigi, which introduces multiple scoring heuristics for identification of classes that are both compositional and discriminatory for groups of entities annotated with ontology classes. The tool includes a novel algorithm for derivation of multivariable semantic explanations for entity groups, makes use of semantic inference through live use of an ontology reasoner, and includes a classification method for identifying the discriminatory power of candidate sets, in addition to significance testing apposite to traditional enrichment approaches. We describe the design and implementation of Klarigi, including its scoring and explanation determination methods, and evaluate its use in application to two test cases with clinical significance, comparing and contrasting methods and results with literature-based and enrichment analysis methods. We demonstrate that Klarigi produces characteristic and discriminatory explanations for groups of biomedical entities in two settings. We also show that these explanations recapitulate and extend the knowledge held in existing biomedical databases and literature for several diseases. We conclude that Klarigi provides a distinct and valuable perspective on biomedical datasets when compared with traditional enrichment methods, and therefore constitutes a new method by which biomedical datasets can be explored, contributing to improved insight into semantic data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106425DOI Listing

Publication Analysis

Top Keywords

biomedical entities
8
ontology classes
8
enrichment analysis
8
characteristic discriminatory
8
entity groups
8
traditional enrichment
8
biomedical datasets
8
semantic
6
biomedical
6
classes
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!