S. involucratae, an endemic and endangered plant, is a valuable and traditional Chinese medicinal herb. In order to control the flowering time of S. involucratae, we used the well-known stress inducible RD29A promoter to drive Hd3a (a FT ortholog from rice) expression in S. involucratae. Unexpectedly, the majority of regenerated buds in RD29A::Hd3a transgenic lines (S-RH) produced flowers in tissue culture stage under normal growth (25 ± 2 °C) condition. Their flowering time was not further influenced by salt treatment. Hd3a in S-RH was strongly expressed in MS media supplemented with or without 50 mM NaCl. RD29A::GUS transgenic experiments further revealed that RD29A constitutively promoted GUS expression in both S. involucrate and halophyte Thellungiella halophile, in contrast to glycophic plants Oryza sativa L. 'Zhonghua 11', in which its expression was up-regulated by cold, salinity, and drought stress. The results supported the hypothesis that RD29A promoter activity is inducible in stress-sensitive plants, but constitutive in stress-tolerant ones. Importantly, S-RH plants produced pollen grains and seeds under normal conditions. Additionally, we found that OsLEA3-1::Hd3a and HSP18.2::Hd3a could not promote S. involucrate to flower under either normal conditions or abiotic stresses. Taken together, we demonstrated the potential of RD29A::Hd3a might be served as a feasible approach in breeding S. involucrate under normal condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.01.009 | DOI Listing |
Plant Physiol Biochem
December 2024
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China. Electronic address:
Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis.
View Article and Find Full Text PDFFunct Integr Genomics
October 2024
Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Elevated temperatures during grain filling stage, exceeding the optimal range by 3-4 °C, not only results in a substantial yield reduction in wheat by 10-50% but activates disease and insect infestation. In this research, we introduced heat-tolerant MYB36 and APX-1 gene cassettes into wheat, employing an efficient Agrobacterium mediated transformation protocol, demonstrating higher transformation efficiency. The study encompassed the assembly of MYB36 and APX-1 gene cassettes, and confirmation of gene products in Agrobacterium, followed by the transformation of the MYB36 and APX-1 genes into wheat explants.
View Article and Find Full Text PDFFront Plant Sci
August 2024
Department of Plant Sciences, University of California Davis, Davis, CA, United States.
Postharvest chilling injury (PCI) is a physiological disorder that often impairs tomato fruit ripening; this reduces fruit quality and shelf-life, and even accelerates spoilage at low temperatures. The gene family confers cold tolerance in , and constitutive overexpression of in tomato increases vegetative chilling tolerance, in part by retarding growth, but, whether CBF increases PCI tolerance in fruit is unknown. We hypothesized that overexpression (OE) would be induced in the cold and increase resistance to PCI.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
Front Plant Sci
April 2024
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States.
Core protein components of the abscisic acid (ABA) signaling network, pyrabactin resistance (PYR), protein phosphatases 2C (PP2C), and SNF1-related protein kinase 2 (SnRK2) are involved in the regulation of stomatal closure and gene expression downstream responses in . Phosphatidic acid (PA) produced by the phospholipases Dα1 and Dδ (PLDs) in the plasma membrane has been identified as a necessary molecule in ABA-inducible stomatal closure. On the other hand, the involvement of PA in ABA-inducible gene expression has been suggested but remains a question.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!