Heterostructure-induced enhanced oxygen catalysis behavior based on metal cobalt coupled with compound anchored on N-doped carbon nanofiber for microbial fuel cell.

J Colloid Interface Sci

School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China. Electronic address:

Published: April 2023

High-efficiency oxygen reduction reaction (ORR) electrocatalyst in microbial fuel cells (MFCs) is important to boost the power production efficiency and reduce overall cost. Herein, we demonstrate a novel nitrogen (N)-doped carbon nanofiber (N-CNF) supported metal and metal compound heterostructure derived from metal-organic frameworks (MOFs), which endows superior electrocatalytic activity by optimizing the coupling modulation effect. The resulting cobalt/cobalt phosphide and cobalt/cobalt sulfide nanoparticles embedded in N-doped carbon nanofiber (Co/CoP/CoP@N-CNF, Co/CoS@N-CNF) present superior ORR activity and methanol tolerance. Moreover, the assembled MFCs modified with Co/CoP/CoP@N-CNF and Co/CoS@N-CNF composite also achieve higher power density (375.16 and 400.06 mW m) as well as coulombic efficiency (11.2 %, 12.4 %), superior than that of Pt/C electrode (333.70 mW m, 10.4 %). Impressively, the Co/CoS@N-CNF electrode exhibits long-term stability and durability in dual-chamber MFCs. A high-performance heterostructure cathode with an effective strategy for bridging nanocatalysis and practical MFCs is reported and presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.01.013DOI Listing

Publication Analysis

Top Keywords

n-doped carbon
12
carbon nanofiber
12
microbial fuel
8
co/cop/cop@n-cnf co/cos@n-cnf
8
heterostructure-induced enhanced
4
enhanced oxygen
4
oxygen catalysis
4
catalysis behavior
4
behavior based
4
based metal
4

Similar Publications

Design and manufacture of cathode materials, with suitable pore structure and high electrical conductivity to matching zinc anode, solving the problem of dissolution and structural degradation of cathode materials for zinc ion batteries (ZIBs), is great significance to the development of ZIBs. Herein, Vanadium Nitride (VN) uniformly decorated N-doped micro/mesoporous carbon nanofibers (VN/N-MCNF) with appropriate porous and reactive sites for Zn2+ is prepared by using V-MOF, as important precursor via electrostatic spinning and pyrolysis technique. As a cathode electrode for ZIBs, the VN/N-MCNF is suitable for diffusion and adsorption of large-sized solvated structured [Zn(H2O)6]2+, for its abundant micro/mesoporous structure and good electrical conductivity.

View Article and Find Full Text PDF

Sn-carbon nanocomposite anode for all-solid-state chloride-ion batteries operating at room temperature.

Chem Commun (Camb)

January 2025

Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.

All-solid-state chloride-ion batteries promise high theoretical energy density and room-temperature operation. However, conventional Sn anodes suffer from low material utilization attributed to large particle size and volume expansion. Here, nano-sized Sn particles in an N-doped carbon framework are used as an anode, resulting in ∼12% higher capacity compared to conventional Sn, due to improved Sn utilization and suppression of volume expansion.

View Article and Find Full Text PDF

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

The effective use of polymer carbon dots (PCD) in various fields of science and technology requires a more detailed understanding of the mechanisms of their photoluminescence formation and change as a result of their interaction with the environment. In this study, PCD synthesized via a hydrothermal method from citric acid and ethylenediamine are studied in various solvents using FTIR spectroscopy, optical absorption spectroscopy, and photoluminescence spectroscopy. As a result of the analysis of the obtained dependencies of such PCD spectral characteristics as the photoluminescence FWHM, the photoluminescence quantum yield, the photoluminescence lifetime on the acidity and basicity of the solvent, a hypothesis was formulated on the formation mechanism of hydrogen bonds between the PCD surface groups and the molecules of the environment, and conclusions were made about the donor-acceptor nature of the synthesized PCD.

View Article and Find Full Text PDF

Synergistic Effect of CNT and N-Doped Graphene Foam on Improving the Corrosion Resistance of Zn Reinforced Epoxy Composite Coatings.

Polymers (Basel)

December 2024

Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.

The synergistic effect of CNT and three-dimensional N-doped graphene foam (3DNG) on improving corrosion resistance of zinc-reinforced epoxy (ZRE) composite coatings was studied in this work. Although CNT itself was demonstrated to be effective to promote the anti-corrosion performance of the ZRE coating, the incorporation of additional 3DNG leads to further enhancement of its corrosion resistance under the synergistic effect of the hybrid carbon nanofillers with different dimensions. Both the content of the carbonaceous fillers and the ratio between them affected the performance of the coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!