We report on the first, to our knowledge, mid-infrared laser operation of two Er-doped barium-containing fluorite-type crystals, BaF and (Sr,Ba)F, featuring a low-phonon energy behavior. A continuous wave 4.9 at.% Er:(Sr,Ba)F laser generated 519 mW at 2.79 µm with a slope efficiency of 25.0% and a laser threshold of 27 mW. The vibronic and spectroscopic properties of these crystals are determined. The phonon energy of (Sr,Ba)F is as low as 267 cm. The Er ions in this crystal feature a broadband emission owing to the I → I transition and a long luminescence lifetime of the I level (10.6 ms) making this compound promising for low-threshold, broadly tunable, and pulsed 2.8-µm lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.479858DOI Listing

Publication Analysis

Top Keywords

mid-infrared laser
8
laser operation
8
operation er-doped
8
baf srbaf
8
er-doped baf
4
srbaf crystals
4
crystals report
4
report knowledge
4
knowledge mid-infrared
4
er-doped barium-containing
4

Similar Publications

Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.

View Article and Find Full Text PDF

We report lasing action in a femtosecond-laser-inscribed waveguide in thulium-doped barium-gallium-germanium oxide (BGG) glass. A laser cavity was assembled with this waveguide that provided a single-mode output of 62 mW when pumped at 1.6 µm.

View Article and Find Full Text PDF

In this Letter, we report an ultraflat high-power supercontinuum (SC) based on a low-loss short-length fluorotellurite fiber. A novel high-peak power dual-Raman soliton femtosecond laser is used as a pump source, which effectively extends the mid-infrared SC spectral range and enhances the flatness of the SC. Finally, we obtained a 10.

View Article and Find Full Text PDF

Can Low Structural Anisotropy Produce High Optical Anisotropy? Anomalous Giant Optical Birefringent Effect in PIAlI in Focus.

J Am Chem Soc

January 2025

Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Tetrahedral halides with broad transparency and large second harmonic effects have the potential to serve as mid-infrared wide-bandgap materials with balanced nonlinear-optical (NLO) properties. However, their regular tetrahedral motifs tend to exhibit low optical birefringence (Δ < 0.03) due to limited structural anisotropy, which constrains their practical phase-matched capability.

View Article and Find Full Text PDF

Rapid High-Sensitivity Analysis of Methane Clumped Isotopes (ΔCHD and ΔCHD) Using Mid-Infrared Laser Spectroscopy.

Anal Chem

January 2025

Laboratory for Air Pollution/Environmental Technology, Empa, 8600 Dübendorf, Switzerland.

Mid-infrared laser absorption spectroscopy enables rapid and nondestructive analysis of methane clumped isotopes. However, current analytical methods require a sample size of 20 mL STP (0.82 mmol) of pure CH gas, which significantly limits its application to natural samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!