Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computational spectroscopy breaks the inherent one-to-one spatial-to-spectral pixel mapping of traditional spectrometers by multiplexing spectral data over a given sensor region. Most computational spectrometers require components that are complex to design, fabricate, or both. DiffuserSpec is a simple computational spectrometer that uses the inherent spectral dispersion of commercially available diffusers to generate speckle patterns that are unique to each wavelength. Using Scotch tape as a diffuser, we demonstrate narrowband and broadband spectral reconstructions with 2-nm spectral resolution over an 85-nm bandwidth in the near-infrared, limited only by the bandwidth of the calibration dataset. We also investigate the effect of spatial sub-sampling of the 2D speckle pattern on resolution performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.476472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!