Tissue injuries, including burns, are major causes of death and morbidity worldwide. These injuries result in the release of intracellular molecules and subsequent inflammatory reactions, changing the tissues' chemical milieu and leading to the development of persistent pain through activating pain-sensing primary sensory neurons. However, the majority of pain-inducing agents in injured tissues are unknown. Here, we report that, amongst other important metabolite changes, lysophosphatidylcholines (LPCs) including 18:0 LPC exhibit significant and consistent local burn injury-induced changes in concentration. 18:0 LPC induces immediate pain and the development of hypersensitivities to mechanical and heat stimuli through molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1, and member 2 at least partly via increasing lateral pressure in the membrane. As levels of LPCs including 18:0 LPC increase in other tissue injuries, our data reveal a novel role for these lipids in injury-associated pain. These findings have high potential to improve patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833116PMC
http://dx.doi.org/10.1097/j.pain.0000000000002709DOI Listing

Publication Analysis

Top Keywords

180 lpc
12
tissue injuries
8
lpcs including
8
including 180
8
elevated 180
4
180 lysophosphatidylcholine
4
lysophosphatidylcholine contributes
4
contributes development
4
pain
4
development pain
4

Similar Publications

Perceptual fluency can increase familiarity of some of the items in recognition tests and enhance attributions of these items to the past. It is not clear, however, whether perceptual fluency can influence recognition under conditions promoting recollection-based memory. To this end, we performed a systematic replication of a study by Lucas and Paller (2013) using a letter-segregated method.

View Article and Find Full Text PDF
Article Synopsis
  • The Letter reports the most accurate measurement so far of the matter-antimatter imbalance during Pb-Pb collisions at a high energy level of 5.02 TeV.
  • It utilizes the Statistical Hadronization framework to determine precise values for the electric charge and baryon chemical potentials, μ_{Q} and μ_{B}.
  • The analysis of antiparticle-to-particle yield ratios shows that the collisions create a system that is generally baryon-free and electrically neutral at midrapidity.
View Article and Find Full Text PDF

Evidence for sequential associative word learning in the auditory domain has been identified in infants, while adults have shown difficulties. To better understand which factors may facilitate adult auditory associative word learning, we assessed the role of auditory expertise as a learner-related property and stimulus order as a stimulus-related manipulation in the association of auditory objects and novel labels. We tested in the first experiment auditorily-trained musicians versus athletes (high-level control group) and in the second experiment stimulus ordering, contrasting object-label versus label-object presentation.

View Article and Find Full Text PDF

The fraction of χ_{c1} and χ_{c2} decays in the prompt J/ψ yield, F_{χ_{c}→J/ψ}=σ_{χ_{c}→J/ψ}/σ_{J/ψ}, is measured by the LHCb detector in pPb collisions at sqrt[s_{NN}]=8.16  TeV. The study covers the forward (1.

View Article and Find Full Text PDF

Purpose: Men with localized or locally advanced prostate cancer (LPC/LAPC) are at risk of progression after radiotherapy (RT) or radical prostatectomy (RP). Using real-world data, we evaluated patient characteristics, treatment patterns, and outcomes in LPC/LAPC.

Methods: Optum claims and electronic health records (EHR) data from January 2010 to December 2021 were queried for men with LPC/LAPC who received primary RT, RP, or androgen deprivation therapy alone within 180 days after diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!