Autoimmunity and allergies affect a large number of people across the globe. Current approaches to these diseases target cell types and pathways that drive disease, but these approaches are not cures and cannot differentiate between healthy cells and disease-causing cells. New immunotherapies that induce potent and selective antigen-specific tolerance is a transformative goal of emerging treatments for autoimmunity and serious allergies. These approaches offer the potential of halting-or even reversing-disease, without immunosuppressive side effects. However, translating successful induction of tolerance to patients is unsuccessful. Biomaterials offer strategies to direct and maximize immunological mechanisms of tolerance through unique capabilities such as codelivery of small molecules or signaling molecules, controlling signal density in key immune tissues, and targeting. While a growing body of work in this area demonstrates success in preclinical animal models, these therapies are only recently being evaluated in human trials. This review will highlight the most recent advances in the use of materials to achieve antigen-specific tolerance and provide commentary on the current state of the clinical development of these technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015875 | PMC |
http://dx.doi.org/10.1002/advs.202205105 | DOI Listing |
J Hematol Oncol
January 2025
Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium.
Cell therapies, including tumor antigen-loaded dendritic cells used as therapeutic cancer vaccines, offer treatment options for patients with malignancies. We evaluated the feasibility, safety, immunogenicity, and clinical activity of adjuvant vaccination with Wilms' tumor protein (WT1) mRNA-electroporated autologous dendritic cells (WT1-mRNA/DC) in a single-arm phase I/II clinical study of patients with advanced solid tumors receiving standard therapy. Disease status and immune reactivity were evaluated after 8 weeks and 6 months.
View Article and Find Full Text PDFNature
January 2025
Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
Tolerance to dietary antigens is critical for avoiding deleterious type 2 immune responses resulting in food allergy (FA) and anaphylaxis. However, the mechanisms resulting in both the maintenance and failure of tolerance to food antigens are poorly understood. Here we demonstrate that the goblet-cell-derived resistin-like molecule β (RELMβ) is a critical regulator of oral tolerance.
View Article and Find Full Text PDFACS Nano
January 2025
Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Multiple sclerosis (MS) is a severe autoimmune disorder that wreaks havoc on the central nervous system, leading to a spectrum of motor and cognitive impairments. There is no cure, and current treatment strategies rely on broad immunosuppression, leaving patients vulnerable to infections. To address this problem, our approach aims to induce antigen-specific tolerance, a much-needed shift in MS therapy.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.
Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.
Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.
JCI Insight
January 2025
Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, Maryland, USA.
BACKGROUNDCow's milk (CM) allergy is the most common food allergy in young children. Treatment with oral immunotherapy (OIT) has shown efficacy, but high rates of adverse reactions. The aim of this study was to determine whether baked milk OIT (BMOIT) could reduce adverse reactions while still inducing desensitization, and to identify immunological correlates of successful BMOIT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!