We compared the neural systems involved in transfer to novel stimuli via rule application versus exemplar processing. Participants learned a categorization task involving abstraction of a complex rule and then categorized different types of transfer stimuli without feedback. Rule stimuli used new features and therefore could only be categorized using the rule. Exemplar stimuli included only one of the features necessary to apply the rule and therefore required participants to categorize based on similarity to individual previously learned category members. Consistent and inconsistent stimuli were formed so that both the rule and feature similarity indicated the same category (consistent) or opposite categories (inconsistent). We found that all conditions eliciting rule-based transfer recruited a medial prefrontal-anterior hippocampal network associated with schematic memory. In contrast, exemplar-based transfer recruited areas of the intraparietal sulcus associated with learning and executing stimulus-category mappings along with the posterior hippocampus. These results support theories of categorization that postulate complementary learning and generalization strategies based on schematic and exemplar mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/jocn_a_01963 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!