The transient electroluminescence (EL) technique is widely used to evaluate the carrier mobility in the field of organic light emitting diodes. The traditional analog detection strategy using oscilloscopes is generally limited since the background noise causes an underestimation of the mobility value. In this paper, we utilize time-correlated single-photon counting (TCSPC) to probe the transient EL for mobility calculation. The measurements on tris(8-hydroxyquinoline) aluminum (Alq) show that the electron mobilities obtained using the TCSPC technique are slightly higher than those obtained from the analog method at all the investigated voltages. Moreover, the TCSPC mobilities demonstrate weaker dependence on the root of electrical field compared to the oscilloscope mobilities. These improvements are attributed to the unique principle of TCSPC, which quantifies the EL intensity by counting the number of single-photon pulses, improving its single-photon sensitivity and eliminating the negative impacts of electrical noise. These advantages make TCSPC a powerful technique in the characterization of time-resolved electroluminescence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756201 | PMC |
http://dx.doi.org/10.1007/s12200-022-00021-8 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.
View Article and Find Full Text PDFChem Sci
January 2025
College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China
Carbene-metal-amide (CMA) complexes are appealing emitters for organic light-emitting diodes (OLEDs). However, little is known about silver(i)-CMA complexes, particularly electroluminescent ones. Here we report a series of Ag(i)-CMA complexes prepared using benzothiophene-fused carbazole derivatives as amide ligands.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China.
Nano Lett
October 2024
Central Research Institute, BOE Technology Group Co., Ltd., Beijing 100176, China.
Parasitic emission or leakage emission caused by electron leakage to a hole transport layer in quantum-dot light-emitting diodes (QLEDs) critically impacts device efficiency and operational stability. The buildup dynamics of such emission channels, however, was insufficiently researched. Herein, we investigate transient electroluminescence dynamics of leakage emission in red/green/blue (R/G/B) QLEDs and reveal notable contrast for R and G.
View Article and Find Full Text PDFJ Am Chem Soc
September 2024
Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
A novel series of excited-state intramolecular proton transfer (ESIPT) emitters, namely, , , and , endowed with dual intramolecular hydrogen bonds, were designed and synthesized. In the condensed phase, exhibit unmatched absorption and emission spectral features, where the minor 0-0 absorption peak becomes a major one in the emission. Detailed spectroscopic and dynamic approaches conclude fast ground-state equilibrium among enol-enol (EE), enol-keto (EK), and keto-keto (KK) isomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!