Newly generated immature B cells that bind self-antigen with high avidity arrest in differentiation and undergo central tolerance via receptor editing and clonal deletion. These autoreactive immature B cells also express low surface levels of the coreceptor CD19, a key activator of the PI3K pathway. Signals emanating from both CD19 and PI3K are known to be critical for attenuating receptor editing and selecting immature B cells into the periphery. However, the mechanisms that modulate CD19 expression at this stage of B cell development have not yet been resolved. Using in vivo and in vitro models, we demonstrate that Cd19 de novo gene transcription and translation do not significantly contribute to the differences in CD19 surface expression in mouse autoreactive and nonautoreactive immature B cells. Instead, CD19 downregulation is induced by BCR stimulation in proportion to BCR engagement, and the remaining surface IgM and CD19 molecules promote intracellular PI3K-AKT activity in proportion to their level of expression. The internalized CD19 is degraded with IgM by the lysosome, but inhibiting lysosome-mediated protein degradation only slightly improves surface CD19. In fact, CD19 is restored only upon Ag removal. Our data also reveal that the PI3K-AKT pathway positively modulates CD19 surface expression in immature B cells via a mechanism that is independent of inhibition of FOXO1 and its role on Cd19 gene transcription while is dependent on mTORC1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074640PMC
http://dx.doi.org/10.4049/immunohorizons.2200092DOI Listing

Publication Analysis

Top Keywords

immature cells
24
cd19
13
receptor editing
8
gene transcription
8
cd19 surface
8
surface expression
8
immature
6
cells
6
surface
5
cd19 internalized
4

Similar Publications

Multi-omics analysis reveals distinct gene regulatory mechanisms between primary and organoid-derived human hepatocytes.

Dis Model Mech

January 2025

Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.

Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.

View Article and Find Full Text PDF

Background Tuberculosis (TB) remains a major cause of global morbidity and mortality. Efforts to control TB are hampered by the lengthy and cumbersome treatment required to eradicate the infection. Bacterial persistence during exposure to bactericidal antibiotics is at least partially mediated by the bacterial stringent response enzyme, Rel .

View Article and Find Full Text PDF

Efficacy of plant extracts against the immature stage of house fly, Musca domestica (Diptera: Muscidae).

Trop Biomed

December 2024

Department of Entomology and Plant Pathology, Khon Kaen University, Thailand Mittapap Road, Khon Kaen, Khon Kaen, 40002, Thailand.

This research aimed to find indigenous plants and suitable solvents to extract substances with the capacity to suppress the immature stages of house fly populations in animal farms and urban areas. Seven native Thai plants were tested: Alstonia scholaris (L.) R.

View Article and Find Full Text PDF

Deciphering the complex clonal heterogeneity of polycythemia vera and the response to interferon alpha.

Blood Adv

January 2025

Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.

Interferon alpha (IFNa) is approved for the therapy of patients (pts) with polycythemia vera (PV), a subtype of myeloproliferative neoplasms (MPN). Some pts achieve molecular responses (MR), but clonal factors sensitizing for MR remain elusive. We integrated colony formation and differentiation assays with single-cell RNA seq and genotyping in PV-derived cells vs.

View Article and Find Full Text PDF

Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!