Although it is well established that motivational factors such as earning more money for performing well improve motor performance, how the motor system implements this improvement remains unclear. For instance, feedback-based control, which uses sensory feedback from the body to correct for errors in movement, improves with greater reward. But feedback control encompasses many feedback loops with diverse characteristics such as the brain regions involved and their response time. Which specific loops drive these performance improvements with reward is unknown, even though their diversity makes it unlikely that they are contributing uniformly. We systematically tested the effect of reward on the latency (how long for a corrective response to arise?) and gain (how large is the corrective response?) of seven distinct sensorimotor feedback loops in humans. Only the fastest feedback loops were insensitive to reward, and the earliest reward-driven changes were consistently an increase in feedback gains, not a reduction in latency. Rather, a reduction of response latencies only tended to occur in slower feedback loops. These observations were similar across sensory modalities (vision and proprioception). Our results may have implications regarding feedback control performance in athletic coaching. For instance, coaching methodologies that rely on reinforcement or 'reward shaping' may need to specifically target aspects of movement that rely on reward-sensitive feedback responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910828 | PMC |
http://dx.doi.org/10.7554/eLife.81325 | DOI Listing |
A coherent optical frequency comb (OFC) with suppressed linewidth is demonstrated based on the spectral broadening of a directly modulated semiconductor microcavity laser with self-injection locking. Due to the high electro-optical response, the directly modulated microcavity laser provides a 10-GHz-spaced seeding OFC with 9 comb teeth in a 10 dB flatness window. Besides, an optical feedback fiber loop with two sub-loops is introduced to reduce the linewidth of the microlaser and suppress the undesired longitudinal modes.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
Plant development depends on growth asymmetry to establish body plans and adapt to environmental stimuli. We explore how plants initiate, propagate, and regulate organ-wide growth asymmetries. External cues, such as light and gravity, and internal signals, including stochastic cellular growth variability, drive these asymmetries.
View Article and Find Full Text PDFNPJ Aging
January 2025
Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, St. Louis, Missouri, USA.
Over the past five years, systemic NAD (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
UMR CNRS-UniCaen-MNHN-SU-UA-IRD BOREA, Biologie des Organismes et des Écosystèmes Aquatiques, Université de Caen-Normandie, CS 14032, 14000 Caen, France - France Énergies Marines, 53 rue de Prony, 76600 Le Havre, France.
In the anthropocene era, one of the greatest challenges facing trophic modeling applied to the marine environment is its ability to couple the multiple effects of both climate change and local anthropogenic activities, notably the development of offshore wind farms. The major challenge is to create scenarios to characterize their cumulative effects on the functioning of the entire socio-ecological system, in order to propose appropriate management plans. Although modeling cumulative impact on socio-ecological networks is not yet widely used, data reported in the present review article show that the relevance of this approach could be established in the context of offshore wind power.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Departamento de Ingeniería Electrónica, Universidad de Sevilla, 41092 Seville, Spain.
Variable-speed electrical drive control typically relies upon a two-loop scheme, one for torque/speed and another for stator current control. In modern drive control methods, the actual mechanical speed is needed for both loops. In practical applications, the speed is often acquired by incremental rotary encoders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!