Beyond Microporosity in Porous Organic Molecular Materials (POMMs).

Angew Chem Int Ed Engl

Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK.

Published: March 2023

Porous organic molecular materials (POMMs) are a novel class of porous materials that cover a wide range of organic-based molecular building blocks connected through weak supramolecular interactions, such as hydrogen bonds, π-π stacking, van der Waals and electrostatic interactions. Despite of their diverse chemical and structural nature, common features to POMMs include solution processability, crystallinity and microporosity. Herein, we focus, for the first time, on the advance of the field of POMMs beyond the archetypical microporosity. In particular, we highlight relevant examples of meso- and macroporous POMMs, as well as hierchachical ones (micro-/meso-, micro-/macro- and meso-/macroporous). We also remark some of their unique properties, and how they can be key in many applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202217729DOI Listing

Publication Analysis

Top Keywords

porous organic
8
organic molecular
8
molecular materials
8
materials pomms
8
pomms
5
microporosity porous
4
pomms porous
4
pomms novel
4
novel class
4
class porous
4

Similar Publications

Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).

View Article and Find Full Text PDF

ZIF-8-Embedded Cation-Exchange Membranes with Improved Monovalent Ion Selectivity for Capacitive Deionization.

Membranes (Basel)

January 2025

Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.

View Article and Find Full Text PDF

A new composite material with enhanced sorption-selective properties for uranium recovery from liquid media has been obtained. Sorbents were synthesized through a polycondensation reaction of a mixture of 4-amino-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (hereinafter referred to as amidoxime) and SiO in an environment of organic solvents (acetic acid, dioxane) and highly porous SiO. To establish optimal conditions for forming the polymer sorption-active part and the synthesis as a whole, a series of composite adsorbents were synthesized with varying amidoxime/matrix ratios (35/65, 50/50, 65/35).

View Article and Find Full Text PDF

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Glutaric anhydride esterification promotes wheat starch/glutein composite gel interaction: Formation, characterization, and oleogel applications.

Food Res Int

February 2025

Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China. Electronic address:

This study constructed a composite system with different ratios (100:0, 95:5, 90:10, and 80:20) of glutein compounded with various esterified starch (3 % and 6 %). The results demonstrated that the esterification process enhanced the viscosity of the starch gel system. Furthermore, the optimal esterification level (3 %) facilitated the formation of a dense composite gel network, as observed through microstructure observation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!