A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoprecipitates of γ-cyclodextrin/epigallocatechin-3-gallate inclusion complexes as efficient antioxidants for preservation of shrimp surimi products: synthesis, performance and mechanism. | LitMetric

Background: Epigallocatechin-3-gallate (EGCG) is well known for excellent chain-breaking antioxidant capability. However, browning by oxidation and aggregation of EGCG is a non-negligible defect that hinders its applications as an antioxidant in various foodstuffs. Therefore, how to eliminate or mitigate browning efficiently, while retaining functionalities as food additive is a challenge in the food industry.

Results: Our results demonstrated that EGCG could be anchored within the internal cavity of γ-cyclodextrin (γ-CD) to form an inclusion structure, where hydrophobic interaction, hydrogen bonding, and π-stacking were identified to be the primary drivers. The interplay between two molecules and the steric hindrance from γ-CD could restrict the motion and aggregation of EGCG efficiently, thus alleviating the browning effect. In addition, the conformational adaption of EGCG within the inclusions would result in general decreases in hydrogen-bond dissociation enthalpies for the pyrogallol-type structure on the b ring, thus enhancing the antioxidant capability. In practical application, the nanoscale γ-CD/EGCG inclusion complexes were validated preliminarily as efficient additives in the preservation of shrimp surimi, presenting significant effects on prolonging the shelf-life of products.

Conclusion: Here, nanoscale γ-CD/EGCG inclusion complexes as alternatives to EGCG were tailored as food antioxidants for the preservation of shrimp surimi products, exerting antioxidant effects while mitigating the browning effects of EGCG on products. Through self-assembly, EGCG would be anchored with the cavity of γ-CD, which could regulate the release modes and restrict the aggregation of EGCG. This facile strategy has great potential in food preservation. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.12449DOI Listing

Publication Analysis

Top Keywords

inclusion complexes
12
preservation shrimp
12
shrimp surimi
12
aggregation egcg
12
egcg
9
antioxidants preservation
8
surimi products
8
antioxidant capability
8
egcg anchored
8
nanoscale γ-cd/egcg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!