AI Article Synopsis

Article Abstract

Efficient separation of oil droplets from oil/water emulsions is necessary for many energy and food industrial processes and for industrial wastewater treatment. Membrane microfiltration has been explored to address this issue because it is simple to operate and low in cost. However, filtration of oil droplets with a size around or less than 1 μm is still a major challenge. Furthermore, the fabrication process for polymeric membranes often uses hazardous organic solvents and petroleum-derived and nonbiodegradable raw materials, which pose additional environmental health and safety risk. In this study, we examined the use of chitosan-based membranes to efficiently remove oil droplets with an average diameter of ∼1 μm. The membranes were fabricated based on the rapid dissolution of chitosan in an alkaline/urea solvent system at a low temperature, thus avoiding the use of any toxic organic solvent. The chitosan membranes were further modified by dopamine and tannic acid (TA). The as-prepared membrane was characterized in terms of surface morphology, pore size distribution, and mechanical strength. The membrane performance was evaluated on a custom-designed crossflow filtration system. The results showed that the modified chitosan membrane with dopamine and TA had a water flux of 230.9 LMH at 1bar transmembrane pressure and oil droplet rejection of 99%. This water flux represented an increase of more than 10 times when compared with the original chitosan membrane without modification. The study also demonstrated excellent antifouling properties of the modified membrane that could achieve near 100% water flux recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807252PMC
http://dx.doi.org/10.1089/ees.2022.0254DOI Listing

Publication Analysis

Top Keywords

oil droplets
12
water flux
12
chitosan-based membranes
8
chitosan membrane
8
membrane
6
membranes
5
biodegradable chitosan-based
4
membranes highly
4
highly effective
4
effective separation
4

Similar Publications

An emulsion of silicone oil droplets in aqueous buffer produces a distinctive series of peaks or resonances in the side scatter histogram in a flow cytometer. As many as 12 peaks are observed in the violet-side scatter channel at 405 nm, with half that number observed in the blue side scatter channel at 488 nm. Using the index of refraction of the oil and buffer, the wavelength of light, and the collection angle and gain of the instrument, we assign the peaks to specific diameters at which Mie resonances occur.

View Article and Find Full Text PDF

Water-in-oil emulsions are critical in various fields, including food, agriculture, personal care, and pharmaceuticals. In some situations, spontaneous emulsification occurs in emulsions with high concentrations of oil-soluble surfactants, in which the parent water drops fragment into finer droplets, forming a network near the interface, which exhibits interfacial elasticity. This study investigates this phenomenon using a water/Span 80-paraffin oil system.

View Article and Find Full Text PDF

Lipophilic molecular rotor to assess the viscosity of oil core in nano-emulsion droplets.

Soft Matter

January 2025

INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France.

Characterization of nanoscale formulations is a continuous challenge. Size, morphology and surface properties are the most common characterizations. However, physicochemical properties inside the nanoparticles, like viscosity, cannot be directly measured.

View Article and Find Full Text PDF

Nature provides many examples of the benefits of nanoscopic surface structures in areas of adhesion and antifouling. Herein, the design, fabrication, and characterization of liquid crystal elastomer (LCE) films are presented with nanowire surface structures that exhibit tunable stimuli-responsive deformations and enhanced adhesion properties. The LCE films are shown to curl toward the side with the nanowires when stimulated by heat or organic solvent vapors.

View Article and Find Full Text PDF

Hypothesis: Due to its huge polar headgroup, octaoxyethylene octyl ether carboxylic acid (CECHCOOH = Akypo LF2™) is supposed not to be able to change its curvature sufficiently to form bicontinuous microemulsions. Instead, upon adding an oil to the binary water - surfactant system, excess oil could be squeezed out or a biliquid foam could form.

Experiments: An auto-dilution setup was used to record small-angle X-ray scattering data along six dilution lines in the newly established phase diagram of the ternary system 2-ethylhexanol - CECHCOOH - water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!