A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the dynamics of flow attenuation at a beaver dam sequence. | LitMetric

Exploring the dynamics of flow attenuation at a beaver dam sequence.

Hydrol Process

Centre for Resilience in Environment, Water and Waste (CREWW), Geography College of Life and Environmental Sciences, University of Exeter Exeter UK.

Published: November 2022

AI Article Synopsis

  • Beavers build dams that change how water flows in streams, which was studied in a place in South West England over many years.
  • The study found that after beavers moved in, it took longer for water to flow in the affected area (up by almost 56%), while it flowed faster in a nearby area that wasn’t affected.
  • Beaver dams help reduce the amount of fast-flowing water during storms, but it’s tough to predict exactly how they will act during really big storms because there isn't enough long-term data.

Article Abstract

Beavers influence hydrology by constructing woody dams. Using a Before After Control Impact experimental design, we quantified the effects of a beaver dam sequence on the flow regime of a stream in SW England and consider the mechanisms that underpin flow attenuation in beaver wetlands. Rainfall-driven hydrological events were extracted between 2009 and 2020, for the impacted ( = 612) and control ( = 634) catchments, capturing events 7 years before and 3 years after beaver occupancy, at the impacted site. General additive models were used to describe average hydrograph geometry across all events. After beaver occupancy, Lag times increased by 55.9% in the impacted site and declined by 17.5% in the control catchment. Flow duration curve analysis showed a larger reduction in frequency of high flows, following beaver dam construction, with declines of Q5 exceedance levels of 33% for the impacted catchment and 15% for the control catchment. Using event total rainfall to predict peak flow, five generalized linear models were fitted to test the hypothesis that beaver dams attenuate flow, to a greater degree, with larger storm magnitude. The best performing model showed, with high confidence, that beaver dams attenuated peak flows, with increasing magnitude, up to between 0.5 and 2.5 m s for the 94th percentile of event total rainfall; but attenuation beyond the 97th percentile cannot be confidently detected. Increasing flow attenuation, with event magnitude, is attributed to transient floodplain storage in low gradient/profile floodplain valleys that results from an increase in active area of the floodplain. These findings support the assertion that beaver dams attenuate flows. However, with long-term datasets of extreme hydrological events lacking, it is challenging to predict the effect of beaver dams during extreme events with high precision. Beaver dams will have spatially variable impacts on hydrological processes, requiring further investigation to quantify responses to dams across differing landscapes and scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828392PMC
http://dx.doi.org/10.1002/hyp.14735DOI Listing

Publication Analysis

Top Keywords

beaver dams
20
flow attenuation
12
beaver dam
12
beaver
11
attenuation beaver
8
dam sequence
8
hydrological events
8
beaver occupancy
8
impacted site
8
control catchment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!