Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus-level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web-building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830016 | PMC |
http://dx.doi.org/10.1002/ece3.9706 | DOI Listing |
Sci Rep
January 2025
Biochemistry and Molecular Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400000, China.
Uterine corpus endometrial carcinoma (UCEC) is a significant cause of cancer-related mortality among women worldwide. Prior research has demonstrated an association between cyclin-dependent kinase inhibitor 2 A (CDKN2A) and various tumors. As a member of the INK4 family, CDKN2A is involved in cell cycle regulation by controlling CDKs.
View Article and Find Full Text PDFHistopathology
January 2025
Department of Diagnostic and Molecular Pathology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Aims: Extragonadal yolk sac tumour (YST) is rare, and may present a diagnostic challenge. YST differentiation was recently reported in some somatically derived tumours in the sinonasal location and in the female genital tract, together with a SMARCB1/INI1 loss. We report two paratesticular/inguinal tumours with striking morphological and immunohistochemical similarities with YST, further expanding the spectrum of extragonadal tumours with YST-like morphology and SMARCB1/INI1 loss.
View Article and Find Full Text PDFJ Invertebr Pathol
January 2025
Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea. Electronic address:
During a field survey of parasitic ciliates diversity in South Korea, a scuticociliate was found in a water sample collected during scuba diving. At first glance, the species looks similar to members of the genus Paranophrys especially P. magna but they differ mainly in the body size and the number of somatic kineties.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Department of Urology, Kyoto University School of Medicine, Kyoto, Japan.
Purpose: Circulating tumor DNA (ctDNA) analysis is an alternative to tissue biopsy for genotyping in various cancers. We aimed to establish a plasma ctDNA sequencing assay, then evaluate its clinical utility in advanced urothelial cancer (UC).
Materials And Methods: This study included 82 patients with muscle-invasive or metastatic UC.
Cancer Control
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
Introduction: and mutations are frequently detected in lung adenocarcinoma (LUAD). Tumor mutational signature (TMS) determination is an approach to identify somatic mutational patterns associated with pathogenic factors. In this study, through the analysis of TMS, the underlying pathogenic factors of LUAD with and mutations were traced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!