The regenerative capacity of skeletal muscle is dependent on satellite cells. The circadian clock regulates the maintenance and function of satellite cells. Cryptochrome 2 (CRY2) is a critical component of the circadian clock, and its role in skeletal muscle regeneration remains controversial. Using the skeletal muscle lineage and satellite cell-specific CRY2 knockout mice (CRY2), we show that the deletion of CRY2 enhances muscle regeneration. Single myofiber analysis revealed that deletion of CRY2 stimulates the proliferation of myoblasts. The differentiation potential of myoblasts was enhanced by the loss of CRY2 evidenced by increased expression of myosin heavy chain (MyHC) and myotube formation in cells versus cells. Immunostaining revealed that the number of mononucleated paired box protein 7 (PAX7) cells associated with myotubes formed by cells was increased compared with cells, suggesting that more reserve cells were produced in the absence of CRY2. Loss of CRY2 leads to the activation of the ERK1/2 signaling pathway and ETS1, which binds to the promoter of PAX7 to induce its transcription. CRY2 deficient myoblasts survived better in ischemic muscle. Therefore, CRY2 is essential in regulating skeletal muscle repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830134PMC
http://dx.doi.org/10.1002/mco2.202DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
loss cry2
12
cry2
10
cells
8
satellite cells
8
circadian clock
8
muscle regeneration
8
deletion cry2
8
muscle
6
cry2 promotes
4

Similar Publications

Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.

Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.

View Article and Find Full Text PDF

Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity.

Nat Metab

January 2025

Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.

View Article and Find Full Text PDF

Objective: Total hip arthroplasty through the Hardinge approach damages the hip abductor muscles. MRI can be used to assess adverse postoperative events. In this prospective randomized controlled trial, we evaluated MRI findings and whether platelet-rich plasma affected postoperative healing of the gluteal muscles (gluteus medius and minimus).

View Article and Find Full Text PDF

Body composition is a determining factor in the physical performance of cyclists, directly influencing efficiency and power during competitions. Understanding these aspects can help optimize training and maximize results. This study aimed to analyze the influence of body composition on physical performance in mountain bike athletes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!