The contributions of various regions of human alpha-thrombin to the formation of the tight complex with hirudin have been assessed by using derivatives of thrombin. alpha-Thrombin in which the active-site serine was modified with diisopropyl fluorophosphate was able to bind hirudin, but its affinity for hirudin was decreased by 10(3)-fold compared to unmodified alpha-thrombin. Modification of the active-site histidine with D-Phe-Pro-Arg-CH2Cl resulted in a form of thrombin with a 10(6)-fold reduced affinity for hirudin. gamma-Thrombin is produced by proteolytic cleavage of alpha-thrombin in two surface loops corresponding to residues 65-83 and 146-150 in alpha-chymotrypsin [Berliner, L. J. (1984) Mol. Cell. Biochem. 61, 159-172; Birktoft, J. J., & Blow, D. M. (1972) J. Mol. Biol. 68, 187-240]. The gamma-thrombin-hirudin complex had a dissociation constant that was 10(6)-fold higher than that of alpha-thrombin. Treatment of alpha-thrombin with pancreatic elastase resulted in a form of thrombin only cleaved in the loop corresponding to residues 146-150 in alpha-chymotrypsin, and this form of thrombin had only a slightly reduced affinity for hirudin. By using limited proteolysis with trypsin, it was possible to isolate beta-thrombin which contained a single cleavage in the loop corresponding to residues 65-83 in alpha-chymotrypsin. This form of thrombin had a 100-fold decrease in affinity for hirudin. Kinetic analysis of the binding of hirudin to beta-thrombin indicated that the 100-fold decrease in affinity was predominantly due to a decrease in the rate of association of the two molecules.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00389a004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!