Background: Indian traditional medicinal plants are known for their great potential in combating viral diseases. Previously, we reported a systematic review approach of seven plausible traditional Indian medicinal plants against SARS-CoV-2.

Methods: Molecular docking was conducted with Biovia Discovery Studio. Three binding domains for spike glycoprotein (PDB IDs: 6LZG, 6M17, 6M0J) and one binding domain of RdRp (PDB ID: 7BTF) were used. Among 100 phytoconstituents listed from seven plants by the IMPPAT database used for virtual screening, the best six compounds were again filtered using Swiss ADME prediction and Lipinski's rule. Additionally, a pseudovirion assay was performed to study the interaction of SARS-CoV-2 S1-protein with the ACE 2 receptor to further confirm the effect.

Results: Chebulagic acid (52.06 Kcal/mol) and kaempferol (48.84 Kcal/mol) showed increased interaction energy compared to umifenovir (33.68 Kcal/mol) for the 6LZG binding domain of spike glycoprotein. Epicatechin gallate (36.95 Kcal/mol) and arachidic acid (26.09 Kcal/mol) showed equally comparable interaction energy compared to umifenovir (38.20 Kcal/mol) for the 6M17 binding domain of spike glycoprotein. Trihydroxychalcone (35.23 Kcal/mol) and kaempferol (36.96 Kcal/mol) showed equally comparable interaction energy with umifenovir (36.60 Kcal/mol) for 6M0J binding domain of spike glycoprotein. Upon analyzing the phytoconstituents against RdRp binding domain, DL-arginine (41.78 Kcal/mol) showed comparable results with the positive control remdesivir (47.61 Kcal/mol). ADME analysis performed using Swiss ADME revealed that kaempferol and DL arginine showed drug-like properties with appropriate pharmacokinetic parameters. Further in vitro analysis of kaempferol by pseudovirion assay confirmed an acceptable decrease of the lentiviral particles in transfected HEK293T-hACE2 cells.

Conclusion: The study highlights that kaempferol and DL-arginine could be the significant molecules to exhibit potent action against SARS-CoV-2 and its variants.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573409919666230112123213DOI Listing

Publication Analysis

Top Keywords

binding domain
20
spike glycoprotein
16
interaction energy
12
domain spike
12
kcal/mol
11
indian traditional
8
medicinal plants
8
6m0j binding
8
swiss adme
8
pseudovirion assay
8

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!