Background: Idiopathic pulmonary fibrosis is a chronic progressive, lethal disease in which ectopic lung fibroblast (LF) activation plays a vital part. We have previously shown that alamandine (ALA) exerts anti-fibrosis effects via the MAS-related G-protein coupled receptor D (MrgD). Here, we further investigate how it moderates transforming growth factor β1 (TGF-β1)-induced LF activation by regulating glucose metabolism and mitochondria autophagy (mitophagy).

Methods: In vitro, we examined glycolysis-related protein hexokinase 2 (HK2), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), and lactic acid in cells treated with TGF-β1. The oxygen consumption rate and the extracellular acidification rate were detected using Seahorse assays. Then, mitophagy was evaluated using transmission electron microscopy, mt-Keima, and the co-localization of Parkin and COX IV with LC3 and LAMP1, respectively. The autophagic degradation of HK2 and PFKFB3 was detected by 3MA and bafilomycin A1 and assessed by their co-localization with LC3 and LAMP1, respectively. The effects of ALA on LF activation markers collagen I and α-SMA were detected. The effects of ALA on glucose metabolism, mitophagy, and the activation of LF were also investigated in vivo.

Results: We found that the ALA/MrgD axis improved TGF-β1-mediated LF activation by repressing glycolysis by downregulating HK2 and PFKFB3 expression. Lactic acid sustained positive feedback between glycolysis and LF activation by maintaining the expression of HK2 and PFKFB3. We also showed that glycolysis enhancement resulted from blocking the autophagic degradation of HK2 and PFKFB3 while upregulated mRNA levels by TGF-β1, while all of those improved by ALA adding. Importantly, we determined that moderation of Parkin/LC3-mediated mitophagy by TGF-β1 also promotes glycolysis but is reversed by ALA. Furthermore, we proved that ALA counteracts the effects of bleomycin on HK2, PFKFB3, LC3, Parkin, and LF activation in vivo.

Conclusion: In this study, we show that the ALA/MrgD axis prevents TGF-β1-mediated fibroblast activation via regulation of aerobic glycolysis and mitophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838062PMC
http://dx.doi.org/10.1186/s12967-022-03837-2DOI Listing

Publication Analysis

Top Keywords

hk2 pfkfb3
20
fibroblast activation
12
activation
9
axis prevents
8
prevents tgf-β1-mediated
8
tgf-β1-mediated fibroblast
8
activation regulation
8
regulation aerobic
8
aerobic glycolysis
8
glycolysis mitophagy
8

Similar Publications

TIMP2-Mediated Mitochondrial Fragmentation and Glycolytic Reprogramming Drive Renal Fibrogenesis following Ischemia-Reperfusion Injury.

Free Radic Biol Med

February 2025

Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Intensive Care Unit of the second affiliated Hospital of Hainan Medical College, Haikou, Hainan, China. Electronic address:

Acute kidney injury (AKI) triggers renal structural and functional abnormalities through inflammatory and fibrotic signaling pathways, ultimately progressing to chronic kidney disease (CKD). The mechanisms underlying AKI-to-CKD transition are complex, with hypoxia, mitochondrial dysfunction, and metabolic reprogramming as critical contributors. Public data analysis demonstrated significant upregulation of tissue inhibitors of metalloproteinases (Timp2) in renal biopsy tissues of CKD patients.

View Article and Find Full Text PDF

KRAS mutations can cause metabolic reprogramming in ovarian cancer, leading to an increased metastatic capacity. This study investigated the metabolic reprogramming changes induced by KRAS mutations in ovarian cancer and the mechanism of action of metformin combined with a glutaminase 1 inhibitor (CB-839). KRAS-mutant ovarian cancer accounted for 14% of ovarian cancers.

View Article and Find Full Text PDF

Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.

View Article and Find Full Text PDF

This work aims to explore the effect of glycolysis on the replication of porcine reproductive and respiratory syndrome virus (PRRSV) in porcine alveolar macrophages (PAMs). The changes of glucose metabolism, PRRSV protein levels, PRRSV titers, and the relative expression levels of genes and proteins in PAMs were analyzed by ELISA, qPCR, virus titration, and Western blotting after PRRSV infection. The effect of hypoxia-inducible factor-1α (HIF-1α) on PRRSV replication was subsequently assessed by specific siRNAs targeting to HIF-1α.

View Article and Find Full Text PDF

Sepsis is a heterogeneous and imprecise disorder characterized by aberrant response to infection which has been accredited for detrimental impact on immune homeostasis. Recently, macrophage metabolism has been recognized as attractive targets to develop novel immunomodulatory therapy for sepsis research. However, the fine-tuning regulators dictating macrophage functions and the specific mechanisms underlying macrophage metabolic reprogramming remain largely obscure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!