Microbial growth in many environments is limited by nitrogen availability, yet there is limited understanding of how complex communities compete for and allocate this resource. Here we develop a broadly applicable approach to track biosynthetic incorporation of N-labelled nitrogen substrates into microbial community proteomes, enabling quantification of protein turnover and N allocation to specific cellular functions in individual taxa. Application to oligotrophic ocean surface water identifies taxa-specific substrate preferences and a distinct subset of protein functions undergoing active biosynthesis. The cyanobacterium Prochlorococcus is the most effective competitor for acquisition of ammonium and urea and shifts its proteomic allocation of N over the day/night cycle. Our approach reveals that infrastructure and protein-turnover functions comprise substantial biosynthetic demand for N in Prochlorococcus and a range of other microbial taxa. The direct interrogation of the proteomic underpinnings of N limitation with N-tracking proteomics illuminates how nutrient stress differentially influences metabolism in co-existing microbes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41564-022-01303-9 | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, CA.(P.K.J., M.A., M.N.R.).
The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States.
View Article and Find Full Text PDFFetal Pediatr Pathol
January 2025
Lauren V. Ackerman Laboratory of Surgical Pathology, Department of Pathology and Immunology, St. Louis, MO, USA.
, a gram-negative bacillus, has varied clinical manifestations with septicemia as the most lethal. PA infection is usually regarded as opportunistic and often nosocomial. We present a case of a "healthy" pediatric patient presenting with upper respiratory symptoms who rapidly deteriorated.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
Background: Scalp itch without evident cause is an uncomfortable symptom that annoys many people in life but lacks adequate attention in academic.
Aims: To investigate the relationship between scalp itching and microorganisms, and identify the key microbes and predicted functions associated with scalp itching, furtherly to provide useful targets for scalp itch solution.
Methods: We performed microbial comparison between 44 normal subjects and 89 subjects having scalp itching problem with un-identified origin based on 16S rRNA gene sequencing and ddPCR (digital droplet PCR), and identified itch relevant microbes and predicted functions.
HSS J
February 2025
Hospital for Special Surgery, New York, NY, USA.
Background: The microbiome has been identified as a contributor to bone quality. As skeletal health is critical to success of orthopedic surgery, the gut microbiome may be a modifiable factor associated with postoperative outcomes. For spine fusion surgery in particular, bone formation and sufficient bone mineral density are essential for successful outcomes.
View Article and Find Full Text PDFFront Immunol
January 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).
Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.
Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!