The ability to deterministically fabricate nanoscale architectures with atomic precision is the central goal of nanotechnology, whereby highly localized changes in the atomic structure can be exploited to control device properties at their fundamental physical limit. Here, an automated, feedback-controlled atomic fabrication method is reported and the formation of 1D-2D heterostructures in MoS is demonstrated through selective transformations along specific crystallographic orientations. The atomic-scale probe of an aberration-corrected scanning transmission electron microscope (STEM) is used, and the shape and symmetry of the scan pathway relative to the sample orientation are controlled. The focused and shaped electron beam is used to reliably create Mo S nanowire (MoS-NW) terminated metallic-semiconductor 1D-2D edge structures within a pristine MoS monolayer with atomic precision. From these results, it is found that a triangular beam path aligned along the zig-zag sulfur terminated (ZZS) direction forms stable MoS-NW edge structures with the highest degree of fidelity without resulting in disordering of the surrounding MoS monolayer. Density functional theory (DFT) calculations and ab initio molecular dynamic simulations (AIMD) are used to calculate the energetic barriers for the most stable atomic edge structures and atomic transformation pathways. These discoveries provide an automated method to improve understanding of atomic-scale transformations while opening a pathway toward more precise atomic-scale engineering of materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202210116DOI Listing

Publication Analysis

Top Keywords

edge structures
12
atomic
8
atomic fabrication
8
atomic precision
8
mos monolayer
8
atomic drill
4
drill bit
4
bit precision
4
precision controlled
4
controlled atomic
4

Similar Publications

Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities.

Mini Rev Med Chem

January 2025

Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.

View Article and Find Full Text PDF

Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).

View Article and Find Full Text PDF

Creating sustainable and stable semiconductors for energy conversion via catalysis, such as water splitting and carbon dioxide reduction, is a major challenge in modern materials chemistry, propelled by the limited and dwindling reserves of platinum group metals. Two-dimensional hexagonal borocarbonitride (h-BCN) is a metal-free alternative and ternary semiconductor, possessing tunable electronic properties between that of hexagonal boron nitride (h-BN) and graphene, and has attracted significant attention as a nonmetallic catalyst for a host of technologically relevant chemical reactions. Herein, we use density functional theory to investigate the stability and optoelectronic properties of phase-separated monolayer h-BCN structures, varying carbon concentration and domain size.

View Article and Find Full Text PDF

The determination of three-dimensional structures (3D structures) is crucial for understanding the correlation between the structural attributes of materials and their functional performance. X-ray absorption near edge structure (XANES) is an indispensable tool to characterize the atomic-scale local 3D structure of the system. Here, we present an approach to simulate XANES based on a customized 3D graph neural network (3DGNN) model, XAS3Dabs, which takes directly the 3D structure of the system as input, and the inherent relation between the fine structure of spectrum and local geometry is considered during the model construction.

View Article and Find Full Text PDF

Fluorinated graphdiyne (F-GDY) materials exhibit exceptional performance in various applications, such as luminescent devices, electron transport, and energy conversion. Although F-GDY has been successfully synthesized, there is a lack of comprehensive identification of fluorinated configurations, either by theory or experiment. In this work, we investigated seven representative F-GDY configurations with low dopant concentrations and simulated their carbon and fluorine 1s X-ray photoelectron spectroscopy (XPS) and carbon 1s near-edge X-ray absorption fine-structure (NEXAFS) spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!