Mitochondrial pyruvate carrier influences ganoderic acid biosynthesis in Ganoderma lucidum.

Appl Microbiol Biotechnol

Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.

Published: February 2023

Mitochondrial pyruvate carriers (MPCs), located in the inner membrane of mitochondria, are essential carriers for pyruvate to enter mitochondria. MPCs regulate a wide range of intracellular metabolic processes, such as glycolysis, the tricarboxylic acid cycle (TCA cycle), fatty acid metabolism, and amino acid metabolism. However, the metabolic regulation of MPCs in macrofungi is poorly studied. We studied the role of MPCs in Ganoderma lucidum (GlMPC) on ganoderic acid (GA) biosynthesis regulation in G. lucidum. In this study, we found that the mitochondrial/cytoplasmic ratio of pyruvate was downregulated about 75% in GlMPC1- and GlMPC2-silenced transformants compared with wild type (WT). In addition, the GA content was 17.72 mg/g and increased by approximately 50% in GlMPC1- and GlMPC2-silenced transformants compared with WT. By assaying the expression levels of three key enzymes and the enzyme activities of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) of the TCA cycle in GlMPC1- and GlMPC2-silenced transformants, it was found that the decrease in GlMPCs activity did not significantly downregulate the TCA cycle rate, and the enzyme activity of IDH increased by 44% compared with WT. We then verified that fatty acid β-oxidation (FAO) supplements the TCA cycle by detecting the expression levels of key enzymes involved in FAO. The results showed that compared with WT, the GA content was 1.14 mg/g and reduced by approximately 40% in co-silenced transformants. KEY POINTS: • GlMPCs affects the distribution of pyruvate between mitochondria and the cytoplasm. • Acetyl-CoA produced by FAO maintains the TCA cycle. • Acetyl-CoA produced by FAO promotes the accumulation of GA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-022-12357-4DOI Listing

Publication Analysis

Top Keywords

tca cycle
20
glmpc1- glmpc2-silenced
12
glmpc2-silenced transformants
12
mitochondrial pyruvate
8
ganoderic acid
8
acid biosynthesis
8
ganoderma lucidum
8
fatty acid
8
acid metabolism
8
transformants compared
8

Similar Publications

Delayed atorvastatin delivery promotes recovery after experimental spinal cord injury.

Neurotherapeutics

January 2025

Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.

View Article and Find Full Text PDF

Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable.

View Article and Find Full Text PDF

Pivotal role of exogenous pyruvate in human natural killer cell metabolism.

Nat Metab

January 2025

CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.

Resting natural killer (NK) cells display immediate effector functions after recognizing transformed or infected cells. The environmental nutrients and metabolic requirements to sustain these functions are not fully understood. Here, we show that NK cells rely on the use of extracellular pyruvate to support effector functions, signal transduction and cell viability.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.

View Article and Find Full Text PDF

Background: We aim to investigate efficacies of Ras homolog (Rho)-associated kinases (ROCK) inhibitors on Alzheimer's disease (AD) pathological proteins in human induced pluripotent stem cell (iPSC)-differentiated human neurons and the P301S tau transgenic mouse model (PS19).

Method: Quantitative liquid chromatography-mass spectrometry (LC-MS/MS) and targeted ELISA were implemented to investigate the effect of treatment with fasudil or its derivatives on the human neurons and brains from PS19 mice. We explored the efficacy of these ROCK inhibitors in reducing tau phosphorylation, and the brain proteomic profiles after their administration in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!