Prospective customers are becoming more concerned about safety and comfort as the automobile industry swings toward automated vehicles (AVs). A comprehensive evaluation of recent AVs collision data indicates that modern automated driving systems are prone to rear-end collisions, usually leading to multiple-vehicle collisions. Moreover, most investigations into severe traffic conditions are confined to single-vehicle collisions. This work reviewed diverse techniques of existing literature to provide planning procedures for multiple vehicle cooperation and collision avoidance (MVCCA) strategies in AVs while also considering their performance and social impact viewpoints. Firstly, we investigate and tabulate the existing MVCCA techniques associated with single-vehicle collision avoidance perspectives. Then, current achievements are extensively evaluated, challenges and flows are identified, and remedies are intelligently formed to exploit a taxonomy. This paper also aims to give readers an AI-enabled conceptual framework and a decision-making model with a concrete structure of the training network settings to bridge the gaps between current investigations. These findings are intended to shed insight into the benefits of the greater efficiency of AVs set-up for academics and policymakers. Lastly, the open research issues discussed in this survey will pave the way for the actual implementation of driverless automated traffic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837199PMC
http://dx.doi.org/10.1038/s41598-022-27026-9DOI Listing

Publication Analysis

Top Keywords

collision avoidance
12
multiple vehicle
8
vehicle cooperation
8
cooperation collision
8
automated vehicles
8
ai-enabled conceptual
8
conceptual framework
8
collision
4
automated
4
avoidance automated
4

Similar Publications

A Fuzzy Control Strategy for Multi-Goal Autonomous Robot Navigation.

Sensors (Basel)

January 2025

Department of Product & Systems Design Engineering, University of the Aegean, 84100 Syros, Greece.

This paper addresses the complex problem of multi-goal robot navigation, framed as an NP-hard traveling salesman problem (TSP), in environments with both static and dynamic obstacles. The proposed approach integrates a novel path planning algorithm based on the Bump-Surface concept to optimize the shortest collision-free path among static obstacles, while a Genetic Algorithm (GA) is employed to determine the optimal sequence of goal points. To manage static or dynamic obstacles, two fuzzy controllers are developed: one for real-time path tracking and another for dynamic obstacle avoidance.

View Article and Find Full Text PDF

Since the field of autonomous vehicles is developing quickly, it is becoming increasingly crucial for them to safely and effectively navigate their surroundings to avoid collisions. The primary collision avoidance algorithms currently employed by self-driving cars are examined in this thorough survey. It looks into several methods, such as sensor-based methods for precise obstacle identification, sophisticated path-planning algorithms that guarantee cars follow dependable and safe paths, and decision-making systems that allow for adaptable reactions to a range of driving situations.

View Article and Find Full Text PDF

IEEE 802.11 is one of the most common medium access control (MAC) protocols used in wireless networks. The carrier sense multiple access with collision avoidance (CSMA/CA) mechanisms in 802.

View Article and Find Full Text PDF

Obstacle-Aware Crowd Surveillance with Mobile Robots in Transportation Stations.

Sensors (Basel)

January 2025

Department of Embedded Systems Engineering, Incheon National University, Incheon 22012, Republic of Korea.

Recent transportation systems are operated by cooperative factors including mobile robots, smart vehicles, and intelligent management. It is highly anticipated that the surveillance using mobile robots can be utilized in complex transportation areas where the high accuracy is required. In this paper, we introduce a crowd surveillance system using mobile robots and intelligent vehicles to provide obstacle avoidance in transportation stations with a consideration of different moving strategies of the robots in an existing 2D area supported by line-based barriers and surveillance formations.

View Article and Find Full Text PDF

Objective. Assistive robots can be developed to restore or provide more autonomy for individuals with motor impairments. In particular, power wheelchairs can compensate lower-limb impairments, while robotic manipulators can compensate upper-limbs impairments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!