The harmful alga Heterosigma akashiwo possesses a hybrid nitrate reductase (NR) enzyme, NR2-2/2HbN, which has the potential to convert NO to nitrate for assimilation into biomass. In previous research, NR transcription in H. akashiwo was induced by nitrate while NR activity was inhibited by ammonium. Here, the capacity of H. akashiwo to use NO in the presence of nitrate and/or ammonium was investigated to understand the regulation of NO assimilation. Continuous cultures of H. akashiwo were acclimated to growth on nitrate, ammonium, or a mixture of both. Aliquots from these cultures were spiked with N-labeled NO. The expression of genes involved in nitrogen assimilation was evaluated, as well as nitrate reductase activity and assimilation of N-labeled nitrogen into algal biomass. Results showed that NO induced expression and activity of NR, and upregulated expression of GOGAT regardless of the presence of other inorganic nitrogen sources, while GS expression decreased over time. Furthermore, NO uptake and assimilation was significantly higher in cultures acclimated for growth on ammonium compared to cultures acclimated for growth on nitrate alone. Assimilation of NO may provide H. akashiwo with a competitive advantage in N-poor environments or areas with elevated NO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837059 | PMC |
http://dx.doi.org/10.1038/s41598-023-27692-3 | DOI Listing |
Planta
January 2025
Normandie Université, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie Et Nutritions N, C, S, Esplanade de La Paix CS14032, 14032, Caen Cedex 5, France.
The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Purpose: This study explored how exogenous silicon (Si) affects growth and salt resistance in maize.
Methods: The maize was cultivated in sand-filled pots, incorporating varied silicon and salt stress (NaCl) treatments. Silicon was applied at 0, 2, 4, 6, and 8 mM, and salt stress was induced using 0, 60 and120 mM concentrations.
Sci Rep
January 2025
Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almeria, Almeria, España.
The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran.
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China.
Assessing how dominant peatland species, such as Dasiphora fruticosa, adapt to water table decline is crucial to advance understanding of their growth and survival strategies. Currently, most studies have primarily focused on their growth and biomass, with limited knowledge on the response of non-structural carbohydrates (NSCs) and physiological adaptations of these woody plants under long-term drainage. This study assessed the response of photosynthesis and transpiration rates, biomass, and NSC concentrations (including soluble sugars and starch) in the leaves, stems, and roots of D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!