Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution.

Nat Commun

Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA.

Published: January 2023

Seawater electrolysis provides a viable method to produce clean hydrogen fuel. To date, however, the realization of high performance photocathodes for seawater hydrogen evolution reaction has remained challenging. Here, we introduce n-p Si photocathodes with dramatically improved activity and stability for hydrogen evolution reaction in seawater, modified by Pt nanoclusters anchored on GaN nanowires. We find that Pt-Ga sites at the Pt/GaN interface promote the dissociation of water molecules and spilling H* over to neighboring Pt atoms for efficient H production. Pt/GaN/Si photocathodes achieve a current density of -10 mA/cm at 0.15 and 0.39 V vs. RHE and high applied bias photon-to-current efficiency of 1.7% and 7.9% in seawater (pH = 8.2) and phosphate-buffered seawater (pH = 7.4), respectively. We further demonstrate a record-high photocurrent density of ~169 mA/cm under concentrated solar light (9 suns). Moreover, Pt/GaN/Si can continuously produce H even under dark conditions by simply switching the electrical contact. This work provides valuable guidelines to design an efficient, stable, and energy-saving electrode for H generation by seawater splitting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837051PMC
http://dx.doi.org/10.1038/s41467-023-35782-zDOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
12
gan nanowires
8
seawater hydrogen
8
evolution reaction
8
seawater
7
nanoclusters gan
4
nanowires solar-asssisted
4
solar-asssisted seawater
4
hydrogen
4
evolution seawater
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!