Fabricating electronic and optoelectronic devices by transferring pre-deposited metal electrodes has attracted considerable attention, owing to the improved device performance. However, the pre-deposited metal electrode typically involves complex fabrication procedures. Here, we introduce our facile electrode fabrication process which is free of lithography, lift-off, and reactive ion etching by directly press-transferring a single-walled carbon nanotube (SWCNT) film. We fabricated Schottky diodes for photodetector applications using dry-transferred SWCNT films as the transparent electrode to increase light absorption in photoactive MoS channels. The MoS flake vertically stacked with an SWCNT electrode can exhibit excellent photodetection performance with a responsivity of ∼2.01 × 10 A/W and a detectivity of ∼3.2 × 10 Jones. Additionally, we carried out temperature-dependent current-voltage measurement and Fowler-Nordheim (FN) plot analysis to explore the dominant charge transport mechanism. The enhanced photodetection in the vertical configuration is found to be attributed to the FN tunneling and internal photoemission of charge carriers excited from indium tin oxide across the MoS layer. Our study provides a novel concept of using a photoactive MoS layer as a tunneling layer itself with a dry-transferred transparent SWCNT electrode for high-performance and energy-efficient optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880956 | PMC |
http://dx.doi.org/10.1021/acsami.2c19917 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!