When the machine is wrong. Characteristics of true and false predictions of Out-of-Hospital Cardiac arrests in emergency calls using a machine-learning model.

Resuscitation

Copenhagen Emergency Medical Services, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Danish Clinical Quality Program (RKKP), National Clinical Registries, Denmark.

Published: February 2023

Background: A machine-learning model trained to recognize emergency calls regarding Out-of-Hospital Cardiac Arrest (OHCA) was tested in clinical practice at Copenhagen Emergency Medical Services (EMS) from September 2018 to December 2019. We aimed to investigate emergency call characteristics where the machine-learning model failed to recognize OHCA or misinterpreted a call as being OHCA.

Methods: All emergency calls were linked to the dispatch database and verified OHCAs were identified by linkage to the Danish Cardiac Arrest Registry. Calls with either false negative or false positive predictions of OHCA were evaluated by trained auditors. Descriptive analyses were performed with absolute numbers and percentages reported.

Results: The machine-learning model processed 169,236 calls to Copenhagen EMS and suspected 5,811 (3.4%) of the calls as OHCA, resulting in 84.5% sensitivity and 97.1% specificity. Among OHCAs not recognised by machine-learning model, a condition completely different from OHCA was presented by caller in 31% of the cases. In 28% of unrecognised calls, patient was reported breathing normally, and language barriers were identified in 23% of the cases. Among falsely suspected OHCA, the patient was reported unconscious in 28% of the cases, and in 13% of the false positive cases the machine-learning model interpreted calls regarding dead patients with irreversible signs of death as OHCA.

Conclusion: Continuous optimization of the language model is needed to improve the prediction of OHCA and thereby improve sensitivity and specificity of the machine-learning model on recognising OHCA in emergency telephone calls.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2023.109689DOI Listing

Publication Analysis

Top Keywords

machine-learning model
28
emergency calls
12
calls
9
out-of-hospital cardiac
8
model
8
cardiac arrest
8
ohca
8
false positive
8
patient reported
8
machine-learning
7

Similar Publications

Active Physics-Informed Deep Learning: Surrogate Modeling for Nonplanar Wavefront Excitation of Topological Nanophotonic Devices.

Nano Lett

January 2025

Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 11-19, Kiel 24098, Germany.

Topological plasmonics combines principles of topology and plasmonics to provide new methods for controlling light, analogous to topological edge states in photonics. However, designing such topological states remains challenging due to the complexity of the high-dimensional design space. We present a novel method that uses supervised, physics-informed deep learning and surrogate modeling to design topological devices for desired wavelengths.

View Article and Find Full Text PDF

AI Methods for Antimicrobial Peptides: Progress and Challenges.

Microb Biotechnol

January 2025

Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning (ML) techniques playing a crucial role. AI approaches have recently revolutionised this field by accelerating the discovery of new peptides with anti-infective activity, particularly in preclinical mouse models.

View Article and Find Full Text PDF

Empirical analysis on retinal segmentation using PSO-based thresholding in diabetic retinopathy grading.

Biomed Tech (Berl)

January 2025

Department of Computer Science, 72937 Centre for Machine Learning and Intelligence (CMLI), Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.

Objectives: Diabetic retinopathy (DR) is associated with long-term diabetes and is a leading cause of blindness if it is not diagnosed early. The rapid growth of deep learning eases the clinicians' DR diagnosing procedure. It automatically extracts the features and performs the grading.

View Article and Find Full Text PDF

Aims: Drug-refractory epilepsy (DRE) refers to the failure of controlling seizures with adequate trials of two tolerated and appropriately chosen anti-seizure medications (ASMs). For patients with DRE, surgical intervention becomes the most effective and viable treatment, but its success rate is unsatisfactory at only approximately 50%. Predicting surgical outcomes in advance can provide additional guidance to clinicians.

View Article and Find Full Text PDF

Transcriptomic predictors of rapid progression from mild cognitive impairment to Alzheimer's disease.

Alzheimers Res Ther

January 2025

Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.

Background: Effective treatment for Alzheimer's disease (AD) remains an unmet need. Thus, identifying patients with mild cognitive impairment (MCI) who are at high-risk of progressing to AD is crucial for early intervention.

Methods: Blood-based transcriptomics analyses were performed using a longitudinal study cohort to compare progressive MCI (P-MCI, n = 28), stable MCI (S-MCI, n = 39), and AD patients (n = 49).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!