Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Different spectroscopy types reveal different aspects of molecular processes in soft matter. In particular, collective observables can provide insights into intermolecular correlations invisible to the more popular single-particle methods. In this perspective we feature the dielectric relaxation spectroscopy (DRS) with an emphasis on the proper interpretation of this complex observable aided by computational spectroscopy. While we focus on the history and recent advances of DRS in the fields of biomolecular hydration and nanoconfinement, the discussion transcends this particular field and provides a guide for how collective spectroscopy types supported by computational decomposition can be employed to further our understanding of soft matter phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c03574 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!